Name:
Adm. No.
Class: \qquad
Signature: \qquad

MOKASA JOINT EXAMINATION
 Kenya Certificate to Secondary Education PHYSICS PAPER 3

 PRACTICAL

 PRACTICAL}

Instructions

- Write your name, admission number, class and signature in the spaces provided at the top of the page.
- Answer all the questions in the spaces provided in this paper.
- You are supposed to spend the first 15 minutes of the $21 / 2$ hours allowed for this paper reading the whole paper carefully before your start.
- Marks will be given for clear record of observations actually made, for their suitability and accuracy, and the use made of them.
- Candidates are advised to record their observations as soon as they are made.
- Electronic calculators and mathematical tables may be used.

FOR EXAMINER'S USE ONLY

Question(s)	Maximum Score		
$\mathbf{1}$	Candidate's Score		
$\mathbf{2}$	I	16	
II	4		
TOTAL	$\mathbf{4 0}$		

This paper consists of $\mathbf{1 0}$ printed pages. Candidates are advised to check and to make sure all pages are printed.

1. You are provided with the following;

- a rectangular glass block
- 4 optical pins
- a soft board
- a plain paper

Proceed as follows:
(a) Place the glass block on the plain paper with one of the largest face upper most. Trace round the glass block using a pencil as shown below.

(b) Remove the glass block and construct a normal at B . Construct an incident ray AB of angle of incidence, $\mathrm{i}=20^{\circ}$.
(c) Replace the glass block and trace the ray ABCD using the optical pins.
(d) Remove the glass block and draw the path of the ray ABCD using a pencil. Measure length L and record it in the table below.

Angle i^{0}	$\mathrm{~L}(\mathrm{~cm})$	$\mathrm{L}^{2}\left(\mathrm{~cm}^{2}\right)$	$\frac{1}{L^{2}}\left(\mathrm{~cm}^{-2}\right)$	$\operatorname{Sin}^{2} i$
20				0.1170
30				0.2500
40				0.4132
50				0.5868
60				0.7500
70				0.8830

(6 marks)
(e) Repeat the procedure above for the angles of incidence given.
(f) Calculate the value of L^{2} and $\frac{1}{L^{2}}$; Record in the table.
(g) Plot a graph of $\frac{1}{L^{2}}$ (y-axis) against $\operatorname{Sin}^{2} i$.

G R A P H
(h) Calculate the gradient, S.
(3 marks)

Given that the equation of that graph is: : $\frac{1}{L^{2}}=-\left(\frac{1}{n^{2} b^{2}}\right) \cdot \operatorname{Sin}^{2} i+\frac{1}{b^{2}}$
(i) Determine the $\frac{1}{L^{2}}$ - intercept C and the $\operatorname{Sin}^{2} i-$ intercept B.

$$
\begin{aligned}
& C= \\
& B= \\
&
\end{aligned}
$$

(1 mark)
(j) Calculate the value of Q given by;

$$
Q=-\left(\frac{C}{s}\right) \div B
$$

(k) Hand in your constructions on the plain paper together with the answer script.
(2 marks)
2. I. You are provided with the following:

- A voltmeter
- An ammeter
- A dry cell
- A cell holder
- A switch
- 7 connecting wires (4 wires with crocodile clips at one end)
- A mounted resistance wire.
(a) Connect voltmeter across the dry cell on an open circuit. Measure its e.m.f.

$\mathrm{E}=$ \qquad (1 mark)
(b) Now connect the apparatus provided as shown below.

Place the crocodile clip/jockey on the wire AB starting with $\mathrm{L}=20 \mathrm{~cm}$. Close the switch K. Record the terminal p.d. , V and corresponding current I.
Repeat for other values of L shown and complete the table.

Length L (cm)	Terminal p.d. $\mathrm{V}(\mathrm{V})$	Current $\mathrm{I}(\mathrm{A})$	$\frac{1}{R}=\frac{I}{V}\left(\Omega^{-1}\right)$	$\frac{1}{V}\left(V^{-1}\right)$
20				
30				
40				
50				
60				
70				

(6 marks)
(c) Plot a graph of $\frac{1}{V}$ (y-axis) against $\frac{1}{R}$.
(4 marks)

G R A P H
(d) Given that the equation of graph is; $\frac{1}{V}=\frac{r}{E} \cdot \frac{1}{R}+\frac{1}{E}$

Determine from the graph:
(i) the intercept C on $\frac{1}{V}$ - axis

$$
\mathrm{C}=
$$

and hence calculate the e.m.f. E of the cell.
(1 mark)
(2 marks)
(ii) the slope S of the graph.
(e) (i) Use the values of C and S above to find W, given by $w=\frac{S}{C}$
(1 mark)
(ii) What is the physical meaning of W.
(1 mark)
2. II. You are provided with the following;

- Half-metre rule
- Knife edge (raised)
- A thread (approx. 20 cm in form of a loop)
- 50 g mass
(a) Determine the c.o.g of the half-metre rule.
c.o.g. = \qquad cm mark.
(b)

(i) Pivot the rule at 15 cm mark and balance it with the mass as shown. When it is well balanced, note and record the position of the 50 g mass;
(1 mark)
Position of 50 g mass $=$ \qquad cm mark
(ii) Use your results to determine the weight of the rule.
(2 marks)

