Name:	Adm. No	
	Class:	
	Signature:	

232/3
PHYSICS
PRACTICAL
MARCH/APRIL 2016
TIME: 2 ½ HRS

MOKASA JOINT EXAMINATION

Kenya Certificate to Secondary Education PHYSICS PAPER 3 PRACTICAL

Instructions

- Write your name, admission number, class and signature in the spaces provided at the top of the page.
- Answer **all** the questions in the spaces provided in this paper.
- You are supposed to spend the first 15 minutes of the 2 ½ hours allowed for this paper reading the whole paper carefully before your start.
- Marks will be given for clear record of observations actually made, for their suitability and accuracy, and the use made of them.
- Candidates are advised to record their observations as soon as they are made.
- Electronic calculators and mathematical tables may be used.

FOR EXAMINER'S USE ONLY

Question(s)	Maximum Score	Candidate's Score
1	20	
2	I 16	
	II 4	
TOTAL	40	

This paper consists of **10** printed pages. Candidates are advised to check and to make sure all pages are printed.

- 1. You are provided with the following;
 - a rectangular glass block
 - 4 optical pins
 - a soft board
 - a plain paper

Proceed as follows:

(a) Place the glass block on the plain paper with one of the largest face upper most. Trace round the glass block using a pencil as shown below.

- (b) Remove the glass block and construct a normal at B. Construct an incident ray AB of angle of incidence, $i=20^{\circ}$.
- (c) Replace the glass block and trace the ray ABCD using the optical pins.

(d) Remove the glass block and draw the path of the ray ABCD using a pencil. Measure length L and record it in the table below.

Angle i ⁰	L (cm)	L ² (cm ²)	$\frac{1}{L^2} (cm^{-2})$	Sin ² i
20				0.1170
30				0.2500
40				0.4132
50				0.5868
60				0.7500
70				0.8830

(6 marks)

- (e) Repeat the procedure above for the angles of incidence given.
- (f) Calculate the value of L² and $\frac{1}{L^2}$; Record in the table.

(g) Plot a graph of $\frac{1}{L^2}$ (y-axis) against $\sin^2 i$.

(5 marks)

GRAPH

(h)	Calculate the gradient, S.
()	, o-

(3 marks)

Given that the equation of that graph is: $\frac{1}{L^2} = -\left(\frac{1}{n^2b^2}\right) \cdot Sin^2i + \frac{1}{b^2}$ (i) Determine the $\frac{1}{L^2}$ – intercept C and the \sin^2i – intercept B.

(1 mark)

(1 mark)

Calculate the value of Q given by; (j)

(2 marks)

$$Q = -\left(\frac{c}{s}\right) \div B$$

(k) Hand in your constructions on the plain paper together with the answer script. (2 marks)

- 2. **I.** You are provided with the following:
 - A voltmeter
 - An ammeter
 - A dry cell
 - A cell holder
 - A switch
 - 7 connecting wires (4 wires with crocodile clips at one end)
 - A mounted resistance wire.
 - (a) Connect voltmeter across the dry cell on an open circuit. Measure its e.m.f.

E = _____

(1 mark)

(b) Now connect the apparatus provided as shown below.

Place the crocodile clip/jockey on the wire AB starting with $L=20\ cm$. Close the switch K. Record the terminal p.d., V and corresponding current I. Repeat for other values of L shown and complete the table.

for free papers visit www.freekcsepastpapers.com

Length L (cm)	Terminal p.d. V(V)	Current I (A)	$\frac{1}{R} = \frac{I}{V}(\Omega^{-1})$	$\frac{1}{V} (V^{-1})$
20				
30				
40				
50				
60				
70				

(6 marks)

(c) Plot a graph of $\frac{1}{V}$ (y-axis) against $\frac{1}{R}$. (4 marks)

GRAPH

(d) Given that the equation of graph is; $\frac{1}{V} = \frac{r}{E} \cdot \frac{1}{R} + \frac{1}{E}$

Determine from the graph:

(i) the intercept C on $\frac{1}{V}$ - axis

C = ____

(1 mark)

and hence calculate the e.m.f. E of the cell.

(2 marks)

(ii) the slope S of the graph.

(2 marks)

(e) (i) Use the values of C and S above to find W, given by $w = \frac{S}{C}$

(1 mark)

(ii) What is the physical meaning of W.

(1 mark)

- 2. **II.** You are provided with the following;
 - Half-metre rule
 - Knife edge (raised)
 - A thread (approx. 20cm in form of a loop)
 - 50g mass
 - (a) Determine the c.o.g of the half-metre rule.

c.o.g. = _____ cm mark.

(1 mark)

(b)

- (i) Pivot the rule at 15cm mark and balance it with the mass as shown. When it is well balanced, note and record the position of the 50g mass; (1 mark)

 Position of 50g mass = ____ cm mark
- (ii) Use your results to determine the weight of the rule. (2 marks)