1. Name the instrument that would be most suitable for measuring the thickest of one sheet of this question paper. (1 mk)

Figure 1 shows a worker ready to lift a load wheelbarrow.

Use the figure to answer questions 2 and 3

2. Indicate and label on the diagram three forces acting on the wheelbarrow when the person is just about to lift the handlebars (2 mks)

3. Suppose the handle bars of the wheelbarrow in question 2 were extended, which force(s) would change and how? (2 mks)

Figure 2 shows a liquid being siphoned from one beaker to another. Refer to this diagram where answering questions 4, 5 and 6

4. Indicate on the diagram the direction of flow of the liquid (1 mk)

5. Show that the force driving the liquid through the U – tube is proportional to the height, h (3 mks)

6. State what would happen to the flow if the system in figure 2 were put in vacuum (1 mk)

7. State the assumption made when calculating the size of a molecule in the thin oil film experiment (1mk)
8. One property of a liquid that is considered while constructing a liquid–glass thermometer is that the liquid expands more than the glass for the same temperature change. State any other two properties of the liquids that are considered.

9. What property of light is suggested by the formation of shadows?

10. In the set up shown in figure 3, water near the top of the boiling tube boils while at the bottom it remains cold.

![Diagram of a boiling tube with water near the top and cold at the bottom.]

Give a reason for the observation.

11. You are provided with a charged electroscope, an insulator, and a conductor. Describe how you would use these apparatus to distinguish in the insulator from the conductor.

12. State two advantages of an alkaline battery over a lead acid battery.

13. The diagram in figure 4 shows two glass tubes of different diameters dipped in water.

![Diagram of two glass tubes dipping into water.]

Explain why h_2 is greater than h_1.

14. The force on a conductor carrying a current in a magnetic field can be varied by changing, among others, the magnitude of the current and the magnetic field strength. Name two other factors that can be changed to vary the force.

15. Give a reason why attraction in magnesium is not regarded as a reliable method of testing for polarity.

16. State two ways by which the frequency of a note produced by a given guitar wire may be increased.

17. The diagram in figure 5 shows a beam negligible weight balanced by constant forces P and Q.

![Diagram of a beam with forces P and Q.]
18. Light travels through glass of refractive index 1.5 with a speed \(v \). Calculate the value of \(v \) (speed of light in air = \(3.0 \times 10^8 \) m/s) \(\) (3 mks)

19. In an experiment using a ripple tank the frequency, \(f \), of the electric pulse generator was reduced to one third of its value. How does the new wavelength compare with the initial wavelength? Explain your answer. \(\) (3 mks)

20. A ray of light incident on the surface of a glass prism is observed to behave as represented in the diagram in figure 6

![Diagram of a prism](image)

Explain this observation \(\) (3 mks)

21. State Newton’s first law of motion \(\) (1 mk)

22. Distinguish between heat capacity and specific heat capacity of a body \(\) (1 mk)

23. Figure 7 represents a tube through which a liquid is flowing in the diagram shown by the arrow

![Diagram of liquid flow](image)

Show on the diagram the relative positions of the levels of the liquid in section marked x, y and z
24. Figure 8 represents two parallel plates of a capacitor separated by a distance d. Each plate has an area of A square units.

Suggest two adjustments that can be made so as to reduce the effective capacitance.

25. Name the property of light that shows that it is a transverse wave.

26. The table below shows the type of radiation, detection methods and uses of electromagnetic radiations. Complete the table.

<table>
<thead>
<tr>
<th>Type of radiation</th>
<th>Detector</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra violet</td>
<td>Photographic paper fluorescence material</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>Phototransistor blackened thermometer</td>
<td>Warmth sensation</td>
</tr>
<tr>
<td>Radio waves</td>
<td>------------------------------</td>
<td>Communication</td>
</tr>
</tbody>
</table>

27. An electron in an excited atom falls from energy levels E2 to energy level E1. Write an equation relating the energy change to the frequency f, of the radiation emitted. Explain why new symbols used.

(2 mks)

28. Name the metal used to shields X – rays operators from the radiation. Give a reason why it is used.

(2 mks)
In an experiment on photo-electricity using metal X, the graph shown in figure 9 was obtained. Use the graph to answer questions 29 and 30.

29. Determine the minimum frequency \(f_0 \) below which no photoelectric emission occurs (2 mks)

30. Sketch on the same axes, a graph for a metal, Y whose work function is higher than metal X (1 mk)

31. State a characteristic of sound, which is determined by overtone (1 mk)

32. A radioactive carbon 14 decay to Nitrogen by beta emission as below

\[
\begin{align*}
14 & \quad x & \quad 0 \\
C \quad & \rightarrow \quad N \quad + \quad e \\
6 & \quad 7 & \quad y
\end{align*}
\]

Determine the values of \(x \) and \(y \) in the equation (2 mks)

33. What is meant by the centre of gravity of a body? (1 mk)

34. State two variables that must be controlled in an experiment for comparing the thermal conductivities of different metal rods of the same diameter (2 mks)

35. Figure 10 represents a signal being fed into a demodulator of a radio receiver. Sketch in the space provided, the output signal (1 mk)
36. Explain with the aid of a labeled ray diagram the wide field of view of a convex mirror (2 mks)