PHYSICS PAPER 282/1B 1996 SECTION 1 (65 MARKS)

Answer all thejquestions in this section in the spaces provided

1. (a) A accelerates uniformdy' from it initial velocity, u, the final velocity, v in time t. The distance traveled during this timê is S. If the acceleration is denoted by the letter, a show that;
(i) $\quad \mathrm{V}=\mathrm{u}+\mathrm{ad} \iota^{5}$
(ii)

$$
\begin{equation*}
S=A t^{x^{s^{5}}}+a t^{2} \tag{2mks}
\end{equation*}
$$

(iii) ${ }^{\chi} \mathrm{V}^{2}=\mathrm{u}^{2}+$ as
(69) Á body moving initially at $50 \mathrm{~m} / \mathrm{s}$ decelerates uniformly at two $2 \mathrm{~ms}^{-2}$ until it comes to rest. -What distance does it cover from the time it started to decelerate
2. (a) Given a bar magnet, an iron bar and a string
(i) Describe a simple experiment to distinguish between the magnet and the iron bar (4 mks)
(ii) State with reasons the observation that would be made in the experiment (4 mks)
(b) In an experiment to magnetize two substances P and Q using electric current, two curves (graphs) were obtained as shown in figure 1

Fig. 1
Using the information in Fig 1 explain the difference between the substances P and Q with references to the domain theory
3. The diagram in fig 2 represent an elestric circuit in which five resistors are connected to be a battery of e.m.f 4.0 V and of negle ifible internal resistance

Determine:
(i) The total resistance of the circuit
(ii) The potential difference between Y and Q
(3 mks)
(2 mks)
4. (a) (i) Describe the experiment to determine the specific heat capacity C, of a block of aluminium with two holes drilled in it, to accommodate a thermometer and an electric immersion heater
(ii) State the measurements required in the experiment and show how they would be used to obtain C (5 mks)
(iii) State two precaution that should be taken in this experiment (2 mks)
(b) A copper calorimeter of mass 60 g is filed with 100 g of water at $25^{\circ} \mathrm{C}$. Steam at a normal temperature and pressure (N.T.P) is passed thought the water until a temperature $45^{\circ} \mathrm{C}$ is attained. The final mass of calorimeter and the contents was found to be 163.5 g . Calculate the specific latent heat of vaporization ' l ' of water (6 mks)

Specific heat capacity for water is $4200 \mathrm{JKg}^{-1}$ and for copper is $378 \mathrm{Kg}^{-1} \mathrm{~K}^{1}$
5. (a) (i) What is the difference between longitudinal and transverse waves? (1 mk)
(ii) State two distinctions between the way sound waves and electromagnetic waves are transmitted (2 mks)
(b) A mineworker stands between two vertical cliffs 400 m from the nearest cliff. The cliffs are X distance apart. Every time he strikes the rock once, he hears two echoes, the first one after 2.5 s , while the second follows 2s later. From this information; calculation:
(i) The speed of the sound in air
(2 mks)
(ii) The value of X
(3 mks)
（c）In an experiment to observe interference of light waves a double slit is placed close to the

骇 Screen
Fig： 3
（i）State the function of the double slit
（ii）Describe what is observed on the screen
（9）State what is observed on the screen when
I．The slit separation $S_{1} S_{2}$ is reduced（ 1 mk ）
II．White light source is used in place of monochromatic source
（ 1 mk ）

SECTION II（15 MARKS）

Answer any two question from this section in the space provides after question 7
6．（a）The fig． 4 shows the diagram of set up to investigate the variation of centripetal with the radius r ，of the circle in which a body rotated

$$
\text { Fig. } 4
$$

Describe how the set up can be used to carry out the investigation
Table 1

Mass， $\mathrm{m}(\mathrm{g})$	60	50	40	30	20
Radius， $\mathrm{r}(\mathrm{cm})$	50	41	33	24	16

Table 1 shows results obtained from an investigation similar to the one in part（a）
（i）Plot a graph of force， F （ y －axis）on the body against the radius，r，（in meters） （ 5 mks ）
（ii）Given that the mass of the body is 100 g ，use the graph to determine the angular velocity，
7. (a) Describe with the aid of a diagram experiment set up for observing photoelectric effect
(b) Table 2 shows the relationshig feetween the wavelength, λ of a radiation falling on the surface and the energy, k of the emittedfelectrons

$\lambda(\mathrm{m}) * 10^{-7}$	$2 \mathrm{O} \cdot$	1.5	1.0	0.5
$\mathrm{K}(\mathrm{J})^{*} 10^{-19} \quad *{ }^{x}$	10	13	20	40

(i) Plot a graph of energy $k(y$ - axis) against the frequency, f, of the incident light
(ii) Q^{∂} Determine the work function Φ of the surface used (5 mks)

Speed of light, $\mathrm{c}=3.00 * 10^{8} \mathrm{~ms}^{-1}$ planks constant $\left.\mathrm{h}=6.663 * 10^{-34} \mathrm{JS}\right]$

