Answer the entire question in this section

1. Use logarithms to evaluate

$$
55.9 \% \div(02621 \times 0.01177)^{1 / 5}
$$

2. Simplify the expression $\frac{x-1}{x}-\frac{2 x+1}{3 x}$
${ }^{\circ} \mathrm{H}$ Hence solve the equation
$\frac{x-1}{x}-\frac{2 x+1}{3 x}=\underline{2}$
3. Simplify as far as possible, leaving your answer in the form of surd $\frac{1}{\sqrt{4-2 \sqrt{ } 3}}-\frac{1}{\sqrt{14}+2 \sqrt{ } 3}$
4. In the figure below $\mathrm{ABC}=30^{\circ}, \mathrm{ACB}=90^{\circ}, A D=4 \sqrt{3}$ and $\mathrm{DC}=4 \mathrm{~cm}$

Calculate the length of (a) AC
(b) BC
5. A plot of land was valued at Kshs 50,000 at the start of 1994. It appreciated by 20% during 1994. Thereafter, every year, it appreciated by 10% of its previous years value.
a. The value of the land at the start Of 1995

b. The value oferthe land at the end Of 1997

6. During a certain periode the exchange rate were follows

1 sterling pound = K Khs. 102.0
1 sterling pound \approx Kshs. U.S dollar
1 U.S dollar = K'shs. 60.6
A school management intended to import textbooks worth Kshs 500,00 from U.K. It enanged the money to sterling pounds. Later the management found out that books were cheaper in U.S.A. Hence it changed the sterling pounds to dolfars. Unfortunately, a financial crisis arose and the money had to be reconverted to Kenya shillings.
ecalculate the total amount of money the management ended up with
7. A manufacturer sells bottle of fruit juice to a trader at a profit of 40%. The trader sells it for Kshs 84 at a profit of 20%. Find
(a) The trader's buying price
(b) The cost of manufacture of one bottle
8. In the figure below a line $X Y$ and three points. A, B and C are given. On the figure construct
(a) The perpendicular bisector of AB
(b) A point P on line xy such that
A APB $=\quad A C B$ x

9. In the figure, KLMN is a trapezium in which KL is parallel to NM and $\mathrm{KL}=3$ NM

K Given that $\mathrm{KN}=\mathrm{w}, \mathrm{NM}=\mathrm{u}$ and $\mathrm{ML}=\mathrm{v}$
Show that $2 u=v=w$
10. Given that $P=3$ y express the equation $3^{2 y}-1+2 \times 3^{y-1}=1$ terms of AP Hence or otherwise find the value of y in the equation $3^{2 y-1}+2 \times 3 y-1=1$
11. A balloon, in the form of a sphere of radius 2 cm , is blown up so that the volume increase by 237.5%. Determine the new volume of balloon in terms of Π
12. Find ${ }^{5} \mathrm{x}$ if
$-3 \log 5 e^{2} \log x^{2}=\log _{125} 1$
(a) Write down the simplest expansion $(1+x)^{6}$
(b) Use the expansion up to the fourth term to find the value of $(1.03)^{6}$ to the nearest one thousandth.
14. A science club is made up of boys and girls. The club has 3 officials. Using a tree diagram or otherwise find the probability that:
(a) The club official are all boys
(b) Two of the officials are girls
15. A river is flowing at uniform speed of $6 \mathrm{~km} / \mathrm{h}$. A canoeist who can paddle at $10 \mathrm{~km} / \mathrm{h}$ through still water wishes to go straight across the river. Find the direction, relative to the bank in which he should steer.
16. The triangular prism shown below has sides $\mathrm{AB}=\mathrm{DC}=\mathrm{EF}=12 \mathrm{~cm}$.

The ends are equilateral triangle of sides 10 cm . The point N is the midpoint

(a) Find the length of
(i) BN
(ii) EN
(b) Find the angle between the line EB and the plane CDEF
17. A cylindrical watertank is a diameter 7 meters and height 2.8 metre (a) Find the capacitra $\mathscr{e}^{\mathscr{C}}$ of the water tank in litres
(b) Six members of a family use 15 litres per day. Each day 80 litres are used for 600 king and washing and a further 60 litres are wasted.
Find the number of complete days a full tank of water would last the famify.
18.
(a) Complete the table below for the value of $y=2 \sin x+\cos x$.

$x_{e^{0}} a^{5}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|l\|} \hline 30 \\ 0 \end{array}$	45	$\begin{array}{\|l\|} \hline 60 \\ 0 \end{array}$	$\begin{aligned} & 90 \\ & 0 \end{aligned}$	$\begin{aligned} & 120 \\ & \hline \end{aligned}$	135	$\begin{aligned} & 150 \\ & 0 \end{aligned}$	$\begin{aligned} & 180 \\ & 0 \end{aligned}$	$\begin{aligned} & 225 \\ & 0 \end{aligned}$	$\begin{array}{\|l\|} \hline 270 \\ 0 \end{array}$	$\begin{array}{\|l\|} \hline 315 \\ 0 \end{array}$	$\begin{aligned} & \hline 360 \\ & 0 \end{aligned}$
	0		1.4	1.7	2	1.7	1.4	1	0		-2	-1.4	0
$\begin{aligned} & \text { Co } \\ & \text { s x } \end{aligned}$	1		0.7	0.5	0	-0.5	-0.7	-0.9	-1		0	0.7	1
y	1		2.1	2.2	2	1.2	0.7	0.1	-1		-2	-0.7	1

(b) Using the grid provided draw the graph of $\mathrm{y}=2 \sin \mathrm{x}+\cos \mathrm{x}$ for 0^{0}. Take 1 cm represent 30° on the x - axis and 2 cm to represent 1 unit on the axis.
(c) Use the graph to find the range of x that satisfy the inequalities $2 \sin \mathrm{x} \cos \mathrm{x}>$ 0.5
19. In the figure below, QOT is a/diameter. $\quad Q T R=48^{\circ}, \quad \quad \mathrm{QQR}=76^{\circ}$ and SRT $=37^{\circ}$

(a) \qquad
(b) $_$SUT
(c) Obtuse/

RUT
(d) $\angle \mathrm{PST}$
20.
(a) Find the value of x at which the curve $y=x-2 x^{2}-3$ crosses the $x-$ axis
(b) $s\left(x^{2}-2 x-3\right) d x$
(c) Find the area bounded by the curve $y=x^{2}-2 x-3$, the axis and the lines $\mathrm{x}=2$ and $\mathrm{x}=4$
21. Two variables R and V are known to satisfy a relation $\mathrm{R}=\mathrm{kV}^{\mathrm{n}}$, where k and n are constants. The table below shows data collected from an experimenteinvolving the two variables R and V .

V						
$\mathrm{R} \mathrm{e}^{2 e^{Q}}$	3	4	5	6	7	8
α^{2}	27	48	75	108	147	192

$(\mathrm{a})^{2}$ Complete the table of $\log \mathrm{V}$ and R given below, by giving the value to 2 decimal places.

Log V	0.48	0.60	0.70	0.78	0.85	0.90
Log R	1.43	1.88	2.03	1.80	2.28	

(b) On the grid provided draw a suitable straight line graph to represent the relation $\mathrm{R}=\mathrm{kV}^{\mathrm{n}}$
(c) (i) the gradient of the line
(ii) a relationship connecting R and V .
22. Two aeroplane P and Q leaves an airport at the same time. P lies on a bearing of 240° at $900 \mathrm{~km} / \mathrm{h}$ while Q flies due east at $750 \mathrm{~km} / \mathrm{h}$.
(a) Using a scale of 1 cm to represents 100 km , make a scale drawing to show the position of the aeroplane after 40 minutes.
(b) Use the scale drawing to find the distance between the two aeroplane after 40 minutes.
(c) Determine the bearing
(i) P from Q
(ii) $\quad \mathrm{Q}$ from P
23. The figure below represents a rectangle PQRS inscribed in a circle centre 0 and radius 17 cm $\mathrm{PQ} / 19 \mathrm{~cm}$.

Calculate
(d) The length PS of the rectangle
(e) The angle POS
(f) The area of the stiaded region
24. A draper is aquired to supply two types of shirts A and type B.

The total numbèr of shirts must not be more than 400 . He has to supply more type A than @f type B however the number of types A shirts must be more than 300 ,
Let x bed ${ }^{0}$ he number of type A shirts and y be the number of types B shirts.
(a) \sqrt{d} rite down in terms of x and y all the linear inequalities representing the information above.
(b) On the grid provided, draw the inequalities and shade the unwanted regions

Type A: Kshs 600 per shirt
Type B: Kshs 400 per shirt
(i) Use the graph to determine the number of shirts of each type that should be made to maximize the profit.
(ii) Calculate the maximum possible profit.

