PHYSICS PAPER 12004 QUESTIONS

1. Figure 1 shows a micrometer screw. ghauge being used to measure the diameter of a ball bearing. $_{\text {a }}$ A magnified portion of the scale $i 8$ shown.

Record the diameter of the ball bearing
2. The system in figure 2 is in equilibrium at room temperature.

The system is taken outside where the temperature is $10^{\circ} \mathrm{c}$ higher for sometime.

Fig. 2
Explain why it tips to the right immediately it is returned to the room.
3. Fig 3 shows a rectangular block of wood with a hollow section (inside) at the position shown.

The block is resting on a Horizontal bench
(i)

State the effected on the stability of the block when the hollow section is filled with water.
ii) Explain your answer in (i) above.
4.
5.

Give a reason why water is not a suitable liquid for use in a barometer.
The temperature of water in a measuring cylinder is lowered from about 20° c to 0°. On the axes provided, sketch the graph of the Volume against temperature assuming the water does not freeze.

6. Two identical aluminium rods as shown in figure 4. One rests on metal block the other on the wooden Block. The protruding ends are heated on a Bunsen burners shown.

State with reason on whish bar the wax is likely to melt.
7. Figure 5 shows two 0° mirrors inclined at an angle of 60° to each other. A ray of light is shown

Sketch the same diagram, the path of the ray until it Fugues the two mirrors. Indicate the angles at each reflection.
8. Figure 6 (a) shows three spherical balls of the same size placed on insulating stands. Balls A and B are conductors while ball C is non conductor. Ball A was initially charged as shown. The quantity of charge is represented by the number of dashes.

Ball ATs made to touch B momentarily and the Show on figure 6(b), the final distribution of charge on the balls.

Fig. $6(b)$
9. State the purpose of Manganese dioxide in a dry cell
10. State one way of reducing surface tension in water.
11. Figure 7 shows the poles of two magnets close together.

Figure 8 shows a current-carrying coil in a magnetic field.

Use the information on the figure to answer question 12 and 13.
12. Mark on figure 8 the direction of the forces acting on the sides of the coil labeled
13. State two ways of increasing the force on the coil.
14. The systemfin figure 9 is in equilibrium.

Determine the weight if the bar.
15. Figure 10 show two circuits in which identical dry cells and identical bulbs are used. Use the information in the figure to answer questions 15 and 16.

Fig. 10
Explain why the bulb in Figure 10(10) will be brighter than each of the bulbs in Figure 10 (a)
16. Give the reason why the cells in figure 10 (b) can be used for a longer period than the cells in

Figure 10 (a)
17. The graph below shows how the velocity varies with time for a body thrown vertically upwards.

Determinezthe total distance moved by the body.
18. A bgdy of mass 60 kg is pulled at a uniform velocity up smooth inclined surface as shown in Figure

$$
\text { Fig. } 11
$$

If the distance moves along the incline is 4.0 m , determine work done by the force F.
19. State the difference between mechanical and electromagnetic waves.
20. An electric heater is connected to the mains supply. A fault in the mains reduces the supply potential slightly.
Explain the effect on the rate of heating of the heater.
A certain powder of mass. 0.10 kg was heated in a container by an electric heater rated 50 w for sometime. The graph below shows the variation of the temperature of the powder with time. Use this information and the graph to answer question 21 and 22.

21. Determine the quantity of heat by the heater from the time the power starts to melt to the time it has all melted.
22. Determine the specific latent heat of fusion of powder assuming the container absorbs negligible amount of heat.
23. Figure 12 shows a parabolic surface with a source of light placed at its focal point F

$$
\text { Fig. } 12
$$

Drarays to show reflection from the surface when rays from the source strike the surface at points $\widehat{A} \hat{B C}$ and D.
24. Figure 13 rows a coin placed in a large empty container. And observer looking into the container from the position shown is unable to see the coin.

Sketch two rays from a point on the coin to show how the observer is able to see the image of the coin after the container if filled with water.
25. A trolley is moving at a uniform speed along a track. A piece of plasticine is dropped on the trolley and sticks on it.
Explain why the trolley slows down.
26. The capacitors in the circuit in fig 14 are identical and initially uncharged.

Fig. 14

Switch S_{1} is closed while switch s_{2} remains open. After sometime, switch s_{1} is opened and switch s_{2} closed. Determine the final reading of the voltmeter, V.
27. A balloon is filled with air to volume of 200 ml at a temperature of 293 K . Determine the volume when the temperature rises to 353 K at the voltmeter, V.
28. State the difference between X-rays and Gamma rays in the way in which they are produced.
29. A body mass 0.50 kg is attached to the end of a string of length 50 cm and whirled in a horizontal circle. If the tension in the string is 81 N , determine the velocity of the body.
30. Fig. 15 shows water waves of differentwavelengths incidentical apertures A and B.

Complete the diagram to show the pattern of the waves beyond the aperture in each case. ${ }^{x^{5}}$
31. A vertical

32. Figure 17 shows the appearance of an alternating signal on a screen of a cathode ray oscilloscope.

On the same diagram, sketch the appearance of the signal when the frequency is doubled and the voltage halved.
33. State the difference between hard X-raycand soft X-rays.
34. The work function of a certain matérial is 3.23 V . Determine the threshold frequency for the material. (1 electron Volt $(\mathrm{eV})=1.8 \mathrm{8} \times 10^{-19}$) and planks Constant $\mathrm{h}=6.62 \times 10^{-34} \mathrm{~J} \mathrm{~s}$)
Figure 18 shows the circuit dfta f ann-n transistor amplifier in common -emitter mode. Use the information on the figure to answer question 35 and 36

$35{ }^{2} e^{\text {e }}$ On the diagram
a) Label the collector current, I_{c} and I_{B}
b) Indicate the directions of 1_{c} and 1_{B} you have labeled in (a) above.
36. Indicate on the diagram, the position where the output V_{0} would be tapped.

