121/1
MATHEMATICS

Paper 1

Oct/Nov. 2008
$21 / 2$ hours.

SECTION 1 (50 MAKS)

Answer all questions in this section.

1. Without using a calculator, evaluate $-8+(-5) \times(-8)-(-6)$

$$
\begin{equation*}
-3+(-8) \div 2 x 4 \tag{2mks}
\end{equation*}
$$

2. Simplify $\frac{27^{2 / 3} \div 2^{4}}{32^{-3 / 4}}$
3. $\mathrm{c}^{\text {Simplify }}$ the expression $\frac{\mathrm{a}^{4}-\mathrm{b}^{4}}{\mathrm{a}^{3}-\mathrm{ab}^{2}}$ (3mks)
Mapesa traveled by train from Butere to Nairobi. The train left Butere on a Sunday at 2350 hours and traveled for 7 hours 15 minutes to reach Nakuru. After a 45 minutes stop in Nakuru, the train took 5 hours 40 minutes to reach Nairobi.
Find the time, in the 12 hours clock system and the day Mapesa arrived in Nairobi.
(2mks)
4. The figure below shows a net of a solid

Below is a part of the sketch of the solid whose net is shown above.
Complete the sketch of the solid, showing the hidden edges with broken lines.

6. A fuel dealer makes a profitiof Kshs. 520 for every 1000 litres of petrol sold and Ksh. 480 for every 1000 litres of diesel sold.
In a certain month the dealer sold twice as much diesel as petrol. If the total fuel sold that month $\mathbf{w a s} 900,000$ litres, find the dealer's profit for the month. (3mks)
7. A liquid spray ${ }^{5}$ of mass 384 g is packed in a cylindrical container of internal radius 3.2 cm . Given that the density of the liquid is $0.6 \mathrm{~g} / \mathrm{cm}^{3}$, calculate to 2 decimaloplaces the height of the liquid in the container.
(3mks)
8. Line BC below is a side of a triangle ABC and also a side of a parallelogram $B{ }^{8} \mathrm{DE}$.

Using a ruler and a pair of compasses only construct:
(i) The triangle ABC given that $\angle \mathrm{ABC}=120^{\circ}$ and $\mathrm{AB}=6 \mathrm{~cm}$
(1mk)
(ii) The parallelogram $B C D E$ whose area is equal to that of the triangle $A B C$ and point E is on line AB
(3mks)
9. A solid metal sphere of radius 4.2 cm was melted and the molten material used to make a cube. Find to 3 significant figures the length of the side of the cube.
10. An angle Of 1.8 radians at the centre of a circle subtends an area of length 23.4 cm

Find;
a) The radius of the circle
(2mks)
b) The area of the sector enclosed by the arc and the radii.
11. Three vertices of a rhombus ABCD are; $\mathrm{A}(-4,-3), \mathrm{B}(1,-1)$ and c are constants. (2mks)
a) Draw the rhombus on the grid provided below. (2mks)
b) Find the equation of the line $A D$ in the form $y=m x+c$, where and c are constants.
12. Two matrices A and B are such that $A=\left\{\begin{array}{ll}\mathrm{k} & 4 \\ \text { and } B & 2\end{array}=\left(\begin{array}{ll}1 & 2\end{array}\right.\right.$

Given that the determinant of $A B=4$, find the value of k.
13. A rectangular and two circular cut-outs of metal sheet of negligible thickness are used to make a closed cylinder. The rectangular cut-out has a height of 18 cm . Each circular cu-out has a radius of 5.2 cm . Calculate in terms of π, the surface area of the cylinder
(3mks)
14. Given that $\log 4=0.6021$ and $\log 6=0.7782$, without using mathematical tables or a calculator, evaluate 16 óg 0.096.
(3mks)
15. The equation of line L_{1}^{\prime} is $2 y-5 x-8=0$ and line L_{2} passes through the points $(-5$, 0) and ($5,-4$). Without drawing the lines L_{1} and L_{2} show that the two lines are perpendicular tờ each other.
$2 \cos 2 \theta=$ for $0^{\circ} \leq \theta \leq 360^{\circ}$
(4mks)

SECTION II (50 MKS)

Answer any five questions in this section.

(a) ${ }^{\text {Q }}$ The ratio of Juma's and Akinyi's earnings was 5:3 Juma's earnings rose to Ksh 8400 after an increase of 12%. Calculate the percentage increase in Akinyi's earnings given that the sum of their new earnings was Ksh. 14100.
(6 mks)
b) Juma and Akinyi contributed all the new earnings to buy maize at Ksh 1175 per bag. The maize was then sold at Ksh 1762.50 per bag. The two shared all the money from the sales of the maize in the ratio of their contributions.
Calculate the amount that Akinyi got.
(4mks)
18. The figure below is a sketch of the curve whose equation is $y=x^{2}+x+5$. It cuts the line $y=11$ at points P and Q.

a) Find the area bounded by the curve $=x^{2}+x+5$ and the line $y=11$ using the trapezium rule with 5 strips.
(5mks)
b) Calculate the difference in the area if the mid-ordinate rule with 5 ordinates was used instead of the trapezium rule.
(5 mks)
In the figure below $\mathrm{AB}=\mathrm{P}, \mathrm{AD}=\mathrm{q}, \mathrm{DE}=1 / 2 \mathrm{AB}$ and $\mathrm{BC}=2 / 3 \mathrm{BD}$

a) Find in terfins of p arid q the vectors:
(1mk)
(1mk)
(1mk)
(1mk)
(2mks)

Given that $\mathrm{AC}=\mathrm{KCE}$, where k is a scalar, find
(i) The value of k
(ii) The ratio in which C divides AE
(4mks)
(1mk)
20. The diagram below represents two vertical watch-towers $A B$ and $C D$ on a level ground. P and Q are two points on a straight road $B D$. The height of the tower $A B$ is 20 m road a $B D$ is 200 m .

a) A car moves from B towards D. At point P, the angle of depression of the car from point A is 11.3°. Calculate the distance BP to 4 significant figures. (2 mks)
b) If the car takes 5 seconds to move from P to Q at an average speed of 36 km / h, calculate the angle of depression of Q from A to 2 decimal places (3mks)
c) Given that $\mathrm{QC}=50.9 \mathrm{~m}$, calculate;
(i) The height of CD in meters to 2 decimal places;
(ii) The angle of elevation of A from C to the nearest degree. (3mks)
21. The diagram below shows atriangle $A B C$ with $A(3,4), B(1,3)$ and $C(2,1)$.

a) Draw $\triangle \mathrm{A}$ ' $\mathrm{B}^{\prime} \mathrm{C}^{\prime}$ the image of ABC under a rotation of $+90^{\circ+}$ about (0 , $0)$.

> (2mks)
b) Drawn $\triangle \mathrm{A}$ " B " the image of A " B ' C " under a reflection in the line $\mathrm{y}=\mathrm{x}$.
(2mks)
c) Draw \triangle A. "B" C. the image under a rotation of -90° about $(0,0)$ (2mks)
d) Describe a single transformation that maps $\triangle A B C$ " onto $\triangle A$ "' $B^{\prime \prime} C^{\prime \prime \prime}$ (2mks)
e) Write down the equations of the lines of symmetry of the quadrilateral
BB"A"'A
(2mks)
22. The diagram below represents a conical vessel which stands vertically. The which stands vertically,. The vessels contains water to a depth of 30 cm . The radius of the surface in the vessel is 21 cm . (Take $\pi=22 / 7$).

a) Calculate the volumerof the water in the vessels in cm^{3}
b) When a metal sphere is completely submerged in the water, the level of the water in the
Calculate:
(i) The radius of the new water surface in the vessel; (2mrks)
(ii) The volume of the metal sphere in cm^{3} (3mks)
(iii) The radius of the sphere.
23. A groupef people planned to contribute equally towards a water project which neede Ksh 200000 to complete, However, 40 members of the group without fro ${ }^{2}$ the project.
As ${ }^{\circ}$ a result, each of the remaining members were to contribute Ksh 2500.
a) Find the original number of members in the group.
(5 mks)
b) Forty five percent of the value of the project was funded by Constituency Development Fund (CDF). Calculate the amount of contribution that would be made by each of the remaining members of the group. (3mks)
c) Member's contributions were in terms of labour provided and money contributed. If the ratio of the value of labour to the money contributed was 6:19; calculate the total amount of money contributed by the members.
(2mks)
24. The distance s metres from a fixed point O, covered by a particle after t seconds is given by the equation;
$S=t^{3}-6 t^{2}+9 t+5$.
a) Calculate the gradient to the curve at $\mathrm{t}=0.5$ seconds (3mks)
b) Determine the values of s at the maximum and minimum turning points of the curve.
c) On the space provided, sketch the curve of $s=t^{3}-6 t^{2}+9 t+5$. (3mks)

121/2
MATHEMATICS

Paper 2

Oct/Nov 2008
$21 / 2$ hours

SECTION I (50 MARKS)

Answer allithe questions in this section in the spaces provided.

1. In this quéstion, show all the steps in your calculations, giving the answer each stagé Use logarithms correct to decimal places, to evaluate.

Make h the subject of the formula
$q=\frac{1+r h}{1-h t}$
3. Line AB given below is one side of triangle ABC. Using a ruler and a pair of compasses only;

(i) Complete the triangle ABC such that $\mathrm{BC}=5 \mathrm{~cm}$ and $\angle \mathrm{ABC}=45^{\circ}$
(ii) On the same diagram construct a circle touching sides AC,BA produced and BC produced.
$\begin{aligned} & \text { 4. The position vectors of points } A \text { and } B \text { are } \\ & \text { respectively. }\end{aligned}\binom{3}{-1}^{8} \begin{aligned} & \text { and } \\ & -4\end{aligned} \quad-6$ A point P divides $A B$ in $A B$ it he ratio $2: 3$. Find the position Vector of point P.
5 The top of a table is a regular hexagon. Each side of the hexagon measures 50.0 cm . Find the maximum percentage error in calculating the perimeter of the top of the table.
6. A student at a certain college has a 60% chance of passing an examination at the first attempt. Each time a student fails and repeats the examination his chances of passing are increased by 15%
Calculate the probability that a student in the college passes an examination at the second or at the third attempt.
(3mks)
7. An aero plane flies at an average speed of 500 knots due East from a point p ($53.4^{0} \mathrm{e}$) to another point Q. It takes $2^{1 / 4}$ hours to reach point Q .
Calculate:
(i) The distance in nautical miles it traveled;
(ii) The longitude of point Q to 2 decimal places
8. a) Expand and simplify the expression

b) Use the expansion in (a) above to find the value of $14^{5} \quad$ (2 mks)
9. In the figure below, angles BAC and ADC are equal. Angle ACD is a right angle. The ratio of the sides.
$\mathrm{AC}: \mathrm{BC}=4: 3 j^{y^{5} \mathrm{~A}}$

Given that the area of triangle ABC is $24 \mathrm{~cm}^{2+}$. Find the triangle ACD (3mks)
10. Points $A(2,2)$ and $B(4,3)$ are mapped onto $A^{\prime}(2,8)$ and $b^{\prime}(4,15)$ respectively by a transformation T.
Find the matrix of T.
11. The equation of a circle is given by $4 x^{2}+4 y^{2+}-8 x+20 y-7=0$.

Determine the coordinates of the centre of the circle.
(3mks)
12. Solve for y in the equation $\log _{10}(3 y+2)-1-\log _{10}(\mathrm{y}-4)$
13. Without using a calculator or mathematical tables, express

$$
\begin{equation*}
\frac{\sqrt{3}}{1-\cos 30^{\circ}} \text { in surd form and simplify } \tag{3mks}
\end{equation*}
$$

14. The figure below represents a triangular prism. The faces $\mathrm{ABCD}, \mathrm{ADEF}$ and CBFE are rectangles.
$\mathrm{AB}=8 \mathrm{~cm}, \mathrm{BC}=14 \mathrm{~cm}, \mathrm{BF}=7 \mathrm{~cm}$ and $\mathrm{AF}=7 \mathrm{crE}$.

Calculate the angle between faces BCEF and ABCD.
15. A particle moves in a straight line from a fixed point. Its velocity Vms-1 after t seconds is given by $V=9 t^{2}-4 t+1$

Calculate the distance traveled by the particle during the third second. (3mks)
16. Find in radians, the varues of x in the interval $0^{0} \leq x \leq 2 \pi^{0+}$ for which $2 \cos$ ${ }^{2} \mathrm{X}=1$.
(Leave the answers in terms of π)

SECTION II (50MKS)

17. a) A A trader deals in two types of rice; type A and with 50 bags of type B. If he sells the mixture at a profit of 20%, calculate the selling price of one bag of the mixture.
da) The trader now mixes type A with type B in the ratio x: y respectively. If the cost of the mixture is Ksh 383.50 per bag, find the ratio x : y .
(4 mks)
c) The trader mixes one bag of the mixture in part (a) with one bag of the mixture in part (b). Calculate the ratio of type A rice to type B rice in this mixture.
(2mks)
18. Three variables p, q and r are such that p varies directly as q and inversely as the square of r.
(a) When $\mathrm{p}=9, \mathrm{q} 12$ and $\mathrm{r}=2$.

Find p when $\mathrm{q}=15$ and $\mathrm{r}=5$
(4mks)
(b) Express q in terms of p and r.
(1mks)
(c) If p is increased by 10% and r is decreased by 10%, find;
(i) A simplified expression for the change in q in terms of p and r
(3mks)
(ii) The percentage change in q.
19. a) complete the table below, giving the values correct to 2 decimal places.

x^{0}	0	30	60	90	120	150	180	210	240	270	300	330	360
$\operatorname{Sin} 2 \mathrm{x}$	0		0.87		-0.87		0	0.87	0.87				0
$3 \cos \mathrm{x}-$ 2	1	0.60		-2	-3.5			-4.60			-0.5		1

b) On the grid provided, draw the graphs of $y=\sin 2 x$ and $y=3 \cos x-2$ for $0^{0} \leq x \leq 3600^{\circ}$ on the same axes. Use a scale of 1 cm to represent 30° on the x -axis and 2 cm to represent 1 unit on the y-axis.
c) Use the graph in (b) above to solve the equation $3 \operatorname{Cos} x-\sin 2 x=2$.
(2mks)
d) State the amplitude of $y=3 \cos x-2$.
20. In the figure below DA is a diameter of the circle ABCD centre O , radius 10 cm . TCS is a tangent to the qifcle at $\mathrm{C}, \mathrm{AB}=\mathrm{BC}$ and angle $\mathrm{DAC}=38^{\circ}$

a) Find the size of the angle;
(i) ACS ;
(ii) BCA
(2mks)
(2mks)
b) Calculate the length of:
(i) AC
(2mks)
(ii) AB
21. Two policemen were together at a road junction. Each had a walkie talkie. The maximum distance at which one could communicate with the other was 2.5 km .

One of the policemen walked due East at $3.2 \mathrm{~km} / \mathrm{h}$ while the other walked due North at $2.4 \mathrm{~km} / \mathrm{h}$ the policeman who headed East traveled for xkm while the one who headed North traveled for y km before they were unable to communicate.
(a) Draw a sketch to represent the relative positions of the policemen. (1mk)
(b) (i) From the information above form two simultaneous equations in x and y.
(2mks)
22. The table below shows the distribution of marks scored by 60 pupils in a test.

Marks	$11-$	$21-$	$31-$	$41-$	$51-$	$61-$	$71-$	$81-$
	20	30	40	50	60	70	80	90
Frequency	2	5	6	10	14	11	9	3

a) On the grid provided, draw an ogive that represents the above information
b) Use the graph to estimate the interquartile range of this information.
(3 mks)
23. Halima deposited Ksh. 109375 in a financial institution which paid simple interest at the rate of 8% p.a. At the end of 2 years, she withdrew all the money. She then invested the money in share. The value of the shares

