depreciated at 4% p.a. duriag the first year of investment. In the next 3 years, the value of the shares appreciated at the rate of 6% every four months
a) Calculate the amount Halima invested in shares. (3mks)
b) Calculate thê value of Halima's shares.
(i) At the end of the first year; (2mks)
(ii) $\dot{A}^{\prime}{ }^{S}$ the end of the fourth year, to the nearest shilling. (3mks)
c) Calçalate Halima's gain from the share as a percentage. (2mks)
(iife e^{e} Find the values of x and y.
(5mks)
(iii) Calculate the time taken before the policemen were unable to communicate.
(2mks)
24. ${ }^{c}$ The table below shows values of x and some values of y for the curve $y=x+3+3 x^{2}+-4 x-12$ in the range $-4 \leq x \leq 2$.
a) Complete the table by filling in the missing values of y.

X	-4	-3.5	-3	-2.5	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2.0
Y		-4.1		-1.1			-9.4	-9.0		-13.1		-7.9	

b) On the grid provided, draw the graph $y=x^{3}+3 x^{2+}-4 x-12$ for $-4 \leq x \leq 2$. Use the scale. Horizontal axis 2 cm for I unit and vertical axis 2 cm for 5 units.
(3mks)
c) By drawing a suitable straight line on the same grid as the curve, solve the equation $x^{3}+3 x^{2}-5 x-6=0$ (5 mks)

K C S E 2009

MATHEMATICS

SECTION I (50 mks)

PAPER 1

Answer all the questions in this section in the spaces provided
1.

Without using mathematical tables or calculator, evaluate
\qquad
$6 \times 18 \div 9+(5-3)$
2. Without using a calculator, evaluate, $21 / 4+3 / 5 \div 5 / 6$ of $2^{2} / 5$, leaving the answer as a fraction in its simplest form
$1^{7 / 10}$ mks)
3. Given that the ratio $x=2: 3$, find the ratio $(5 x-2 y):(x+y)$
4. A bus travelinîg at an average speed of $63 \mathrm{~km} / \mathrm{h}$ left a station at $8.15 \mathrm{a} . \mathrm{m}$. find the average speed of the car.
5.
6. The figure below represents a plot of land ABCD such that $\mathrm{AB}=85 \mathrm{~m}, \mathrm{BC}=75$ $\mathrm{m}, \mathrm{CD}=60 \mathrm{~m} \mathrm{DA}=50 \mathrm{~m}$ and angle $\mathrm{ABC}=90^{\circ}$

完

Determine the area of the ploe in hectares correct to two decimal places. (4 mks)
7. A watch which loses a half-minute every hour was set to read the correct time at $054500^{c^{5}}$ on Monday. Determine the time in the 12 - hour system, the watch wild Show on the following Friday at 1945 h
8. Simplify the expression $\frac{12 x^{2}+a x-6 a^{2+}}{9 x^{2}-4 a^{2}}$
9. A line which joins the points a $(3, \mathrm{k})$ and $\mathrm{B}(-2,5)$ is parallel to another line whose equation is $5 \mathrm{y}+2 \mathrm{x}=10$

Find the value of k .
10. The size of an interior angle of a regular polygon is $6 \frac{1}{2}$ times that of its exterior angle determine the number of sides of the polygon. mks)
11. Line $A B$ shown below is a side of a trapezium $A B C D$ in which angle $A B C$ in which angle $\mathrm{ABC}=105^{\circ}, \mathrm{BC}=4 \mathrm{~cm}$,
$C D=5 \mathrm{~cm}$ and $C D$ is parallel to $A B$.

Using a ruler and a pair of compasses only:
a) Cond ${ }^{2}$ plete the trapezium;
b) c° Locate point t on line AB such that angle $\mathrm{ATD}=90^{\circ}$
12. An electric pole is supported t stand vertically on a level ground by a tight wire. The wire is pegged at a distance of 6 metres from the foot of the pole as shown.

The angle which the wire makes with the ground is three times the angle it makes with the pole.

Calculate the length of the wire to the nearest centimeter.
13. Give the equation: $\operatorname{Sin}\left(3 x+30^{\circ}\right)=\sqrt{3}$, for $0^{\circ} \leq x \leq 90^{\circ}$
14. The diagonals of a rhodibus PQRS intersect at T. Given that $\mathrm{p}(2,2), \mathrm{Q}(3,6)$ and
$R(-1,5)$:
a) Draw $e^{t^{c^{5}}}{ }^{5}$ rhombus PQRS on the grid provided;
b) Sexate the coordinates of T.

Abdi sold a radio costing Kshs 3800 at a profit of 20%. He earned a commission of $221 / 25$ on the profit. Find the amount he earned. (2 mks)
16. The following data was obtained for the masses of certain animals.

Mass (x kg)	Frequency
$1.5 \leq x<5.5$	16
$5.5 \leq x<7.5$	20
$7.5 \leq x<13.5$	18
$13.5 \leq x<155$	14

Complete the histogram on the grid provided

SECTION II (50 MARKS)

Answer only five questions in this section in the spaces provided.

17 In the figure below (not drawn to scale), $\mathrm{AB}=8 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}, \mathrm{AD}=7 \mathrm{~cm}, \mathrm{CD}=$ 2.82 cm and angle $\mathrm{CAB}=50^{\circ}$

Calculate, to 2 decimald ${ }^{2}$

a) The length $\mathrm{F}_{\mathrm{B}} \mathrm{C}$,
(2 mks)
b) The sizêe ${ }^{S^{2}}$ of angle ABC, (3 mks)
c) The $e^{-c^{s}}$ size of angle CAD,
d) $e^{\sigma^{x}}$ The area of triangle ACD
(3 mks)
(2 mks)
b) Express vector NM in terms of OB
(1 mk)
c) Point P maps onto P by a translation -5 given that

$$
\begin{equation*}
\mathrm{OP}=\mathrm{OM}+2 \mathrm{MN}, \text { find the coordinates of } \mathrm{P} . \tag{3mks}
\end{equation*}
$$

18. The marks scored by a group of pupils in a mathematics test were as recorded in the table below

Marks	Frequency

a) i) State the modal class
(1 mk)
ii) Determine the class in which the median mark lies (2 mks)
b) Using an assumed mean of 54.4, calculate the mean mark (7 mks)
19.

A school planned to buy x cailculators for a total cost of Kshs 16 200. The supplier agreed to offerea discount of Kshs 60 per calculator. The school was then able to get thatee extra calculators for the same amount of money.
a) Worite an expression in terms of x, for the:

Original price of each calculator.
(1 mk)
ii) Price of each calculator after the discount
(1 mk)
b) Form an equation in x and hence determine the number of calculators the

School bought.
c) Calculate the discount offered to the school as a percentage (3 mks)
20. The position vectors of points A and B with respect to the origin O, are

$$
\left[\begin{array}{r}
-8 \\
5
\end{array}\right] \text { and }-1 \begin{gathered}
\\
-5
\end{gathered} \quad \text { respectively }
$$

a) Find:
i) The coordinates of N and M ;
ii) The magnituderof Nm
21. A glass, in the form of frustum of a cone, is represented by the diagram below.

The glass contains water to a height of 9 cm ,. The bottom of the glass is a

a) Calculate the volume of the water in the glass
b) When a spherical marble is submerged into the water in the glass, the water level rises by 1 cm .

Calculate:
i) The volume of the marble;
(4 mks)

ii) The radius of the marble

22. The diagrani below shows the speed-time graph for a train traveling betweent two stations. The train starts from rest and accelerates usif ungiformly for 150 seconds. It then travels at a constant speed for 300 seconds and finally decelerates uniformly for 200 seconds.

Time in seconds

Given that the distance between the two stations is 10450 m , calculate the:
a) Maximum speed, in Km / h, the train attained;
b) Acceleration, (2 mks)
c) Distance the train traveled during the last 100 seconds;
d) Time the train takes to travel the first half of the journey.
23. Three points P, Q and \mathbb{R} are on a level ground. Q is 240 m from P on a bearing of 230°. is 120 m to the east of P
a) Using ${ }^{2 \sigma^{2}}$ Scale of 1 cm to represent 40 m , draw a diagram to show the pegsitions of
Determine
i) The distance of R from $Q \quad(2 \mathrm{mks})$
ii) The bearing of R from $\mathrm{Q} \quad(2 \mathrm{mks})$
c) A vertical post stands at P and another one at Q . A bird takes 18
seconds
to fly directly from the top of the post at q to the top of the post at P.

Given that the angle of depression of the top of the post at P from the top of the post at Q is 9°,

Calculate:
i) The distance to the nearest metre, the bird covers;
ii)The speed of the bird in Km / h
24. a) On the grid provided, draw a graph of the function

$$
\begin{equation*}
Y=1 / 2 x^{2}-x+3 \text { for } 0 \leq x \leq 6 \tag{3mks}
\end{equation*}
$$

b) Calculate the mic hence

Use the mid-ordinate rule to approximate the area under the curve between $x=1, x=6$ and the x-axis.

Assuming that the area determined by integration to e the actual area, calculate the percentage error in using the mid-ordinate rule. (4 mks)

THE YEAR 2009

MATHEMATICS PAPER 2

SECTION (50 MKS)

Answer all the questions in this section in the spaces provided.

1. A farmer feed every two cows on 480 Kg of hay for four days. The farmer has 20160 Kg of hay which is just enough to feed his cows for 6 weeks. Find the number of cows in the farm.
2. find a quadratic equation whose roots are $1.5+\sqrt{ } 2$ and $1.5-\sqrt{ } 2$, expressing it in the form $a x^{2}+b x+c=0$, where a, b and c are integers (3 mks)
3. Thee mass of a wire m grams (g) is partly a constant and partly varies as the square of its thickness t mm . when $\mathrm{t}=2 \mathrm{~mm}, \mathrm{~m}=40 \mathrm{~g}$ and when $\mathrm{t}=3$ $\mathrm{mm}, \mathrm{m}=65 \mathrm{~g}$

Determine the value of m when $\mathrm{t}=4 \mathrm{~mm}$.
4. In the figure below, O is the centre of the circle and radius ON is perpendicular to the line TS at N .

Using a ruler and a pair o compasses only, construct a triangle $A B C$ to inscribe the circle, given that angle $\mathrm{ABC}=60^{\circ}, \mathrm{BC}=12 \mathrm{~cm}$ and points B and C are on the line $\mathrm{TS}(4 \mathrm{mks})$
5. a solution was gently heated, its temperature readings taken at intervals of 1 minute and recorded as shown in the table below.

a) Draw the timè̈-temperature graph on the grid provided (2 mks)
b) Use the graph to find the average rate of change in temperature Between $t=$ 1.8
(2 mks)

c is on $O B$ such that $C B=2 O C$

Point D is on $A B$ such that $A D=3 D B$.

Express CD as a column vector.
7. In a certain commercial bank, customer may withdraw cash through one of the two tellers at the counter. On average, one teller takes 3 minutes while the other teller takes 5 minutes to serve a customer. If the two tellers start to serve the customers at the same time, find the shortest time it takes to serve 200 customers.
mks)
8. a) Expand and simplify the binomial expression $(2-x)^{7}$ in ascending

b) Use the expânsion up to the fourth term to evaluate $(1.97)^{7}$ correct to 4 decimary
(2 mks)
9. The ${ }^{x}$ area of triangle FGH is $21 \mathrm{~cm}^{2}$. The triangle FGH is transformed using the

Calculate the area of the image of triangle FGH
(2 mks)
10. Simplify $\sqrt{3}$

$$
\sqrt{ } 3-\sqrt{2}
$$

(2 mks)
11. A circle whose equation is $(x-1)^{2}+(y-k)^{2}=10$ passes through the point $(2,5)$. Find the coordinates of the two possible centres of the circle. (3 mks)
12. On a certain day, the probability that it rains is $1 / 7$. When it rains the probability that Omondi carries an umbrella is $2 / 3$. When it does not rain the probability that Omondi carries an umbrella is $1 / 6$. Find the Probability that Omondi carried an umbrella that day.
13. Point $P\left(40^{\circ} \mathrm{S}, 45^{\circ} \mathrm{E}\right)$ and point $\mathrm{Q}\left(40^{\circ} \mathrm{S}, 60^{\circ} \mathrm{W}\right)$ are on the surface of the Earth. Calculate the showtest distance along a circle of latitude between the two points.

14. Solfe $4-4 \operatorname{Cos}^{2} \operatorname{Cos}^{2} \propto=-1$ for $0^{\circ} \leq \propto \leq 360^{\circ}$ (4 mks)

In the figure below, AT is a tangent to the circle at $\mathrm{ATB}=48^{\circ}, \mathrm{BC}=5 \mathrm{~cm}$ and $\mathrm{CT}=4 \mathrm{~cm}$.

Calculate the length AT.
16. A particle moves in a straight line with a velocity $\mathrm{V} \mathrm{ms}^{-1}$. Its velocity after t seconds is given by $\mathrm{V}=3 \mathrm{t}^{2}-6 \mathrm{t}-9$.

The figure below is a sketch of the velocity-time graph of the particle

Calculate the distance the particle moves between $t=1$ and $t=4$
(4 mks)

SECTION II (50 MKS)

Answer only five questions in this section in the spaces provided

17. A water vendor haŝ a tank of capacity 18900 litres. The tank is being filled with water frôm two pipe A and B which are closed immediately when the tank is full. Wa ther flows at the rate of
a) $\partial^{\sigma^{\alpha}}$ If the tank is empty and the two pipes are opened at the same time, calculate the time it takes to fill the tank. (3 mks)
b) On a certain day the vendor opened the two pipes A and B to fill the empty tank. After 25 minutes he opened the outlet to supply water to his customers at an average rate of 20 Liters per minute
i) Calculate the time it took to fill the tank on that day. (3 mks)
ii) The vendor supplied a total of 542 jerricans, each containing 25 litres of water, on the day. If the water that remained in the tank was 6300 litres, calculate, in litres, the amount of water that was wasted.
18. At the beginning of the year 1998, Kanyingi bought two houses, one in Thika and the other one Nairobi, each at Ksh 1240 000. The value of the house in Thika appreciated at the rate of 12% p.a
a) Calculate the value of the house in thirika after 9 years, to the nearest shilling.
b) After n years, the value of the house in Thika was Kshs 2741245 while the verlue of the house in Nairobi was Kshs 2917231.
i) Find n
ii) Find the annual rate of appreciation of the house in Nairobi.
19. The table below shows the number of goals scored in handball matches during a
tournament.

Number of goal	$0-9$	$10-19$	$20-29$	$30-39$	$40-49$
Number of matches	2	14	24	12	8

Draw a cumulative frequency curve on the grid provided
b) Using the curve drawn in (a) above determine;
i) The median;
ii) The number of matches in which goals scored were not more than 37;
iii) The inter-quartile rarage
20. Triangle $P Q R$ shown on the grid has vertices $p(5,5), Q(10,10)$ and $R(10,15)$

a) Find coordinates of points p , Q^{\prime} and
R ' and the images of P, Q and R
respectively under transformation M
whose matrix is
(2 mks) $\left(\begin{array}{ll}-0.6 & 0.8 \\ 0.8 & 0.6\end{array}\right)$
b) Given that M is a reflection;
i) draw triangle PZQ'R' and the mirror line of the reflection;
mk)
ii) Determine the equation of the mirror line of the reflection

Triangle P" Q" R " is the image of triangle P'Q'R' under reflection N is a reflection in the y-axis.
i) draw triangle P"Q"R"
ii) Determine a 2 x 2 matrix equivalent to the transformation NM mks)
iii) Describe fully a single transformation that maps triangle PQR onto
triangle P"Q"R"
(2 mks)
21. The table below shows income tax rates.

Monthly income in	Tax rate percentage (\%)				
Kenya shillings (Kshs)	In each shilling	$	$	Up to 9680	10
:---	:---				
From 9681 to 18800	20				
From 18801 to 27920	25921 to 37040				

In certain weár, Robi’s monthly taxable earnings amounted to Kshs. 24200.
a) (4 mks)
b) Robi was entitled to the following tax reliefs:

I: monthly personal relief of Ksh 1 056;
II: Monthly insurance relief at the rate of 15% of the premium paid.

Calculate the tax paid by Robi each month, if she paid a monthly premium of Kshs 2400 towards her life insurance policy. (2 mks)
C) During a certain month, Robi received additional earnings which were taxed at 20% in each shilling. Given that she paid 36.3% more tax that month, calculate the percentage increase in her earnings.
(4 mks)
22. The figure below shows a right pyramid mounted onto a cuboid. $\mathrm{AB}=\mathrm{BC}=$

Calculate:
a) The length of AC;
b) The angle between the line AG and the plane ABCD;
c) The vertical height of point V from the plane $A B C D$;
d) The angle between the planes EFV and ABCD.
23. a)The first term of an Arithmetic Progression (AP) is 2. The sum of the first 8 terms of the AP is 156
i) Find the common difference of the AP. (2 mks)
ii) Given that
b) Tha $e^{5^{5}} 3^{\text {rd }}, 5^{\text {th }}$ and $8^{\text {th }}$ terms of another AP form the first three terms of a Geg ${ }^{\text {m }}$ netric Progression (GP)

Tf the common difference of the AP is 3 , find:
i) The first term of the GP;
ii) The sum of the first 9 terms of the GP, to 4 significant figures.
24. Amina carried out an experiment to determine the average volume of a ball bearing. He started by submerging three ball bearings in water contained in a measuring cylinder. She then added one ball a time into the cylinder until the balls were nine..

The corresponding readings were recorded as shown in the table below

Number of ball bearings(x)	3	4	5	6	7	8	9
Measuring cylinger reading (y)	98.0	105.0	123.0	130.5	145.6	156.9	170.0

