PHYSICS ${ }^{\ominus}$ PRACTICALS 2011

PAPER 3

Question 1

Part A

You are provided with the following:

- a voltmeter
- a resistance wire labelfled P mounted on a metre rule.
- a resistance wiredabella Q mounted on a piece of carton.
- 2 dry cells at dea cell holder
- 6 connecting wires each with a crocodile clip at one end.

Proceed ascifollows:
(a) Place the dry cells in series in the cell holder. Measure and. record the total emf E of the cell.
$\mathrm{E}_{0}=3.0+-0.2 \mathrm{~V}$
(b) Connect the circuit as show in figure 1

O is a point on P at the 50 cm mark of the metre rule. A and B are points on P such
(c) Adjust the positions of the crocodile clips A and B on. P such that. $\mathrm{AO}=\mathrm{OB}=\mathrm{X}-2.5 \mathrm{~cm}$; Close the switch. Read and record the potential difference (V) across AO in table 1
(d) Repeat. part (c) for other values of X shown in table 1 and complete the table.
(e) On the grid provided, plot a graph of - (y - axis) against
(5 marks)
(f) Determine the slope S of the graph. (3 marks)
(g) Use the slope to determine the constant h, given that $h=\underline{8}$ (9 marks)

Part B

You are provided with the following:

- a soft drawing board.
- a semicircular glass block.
-three drawing pins;
- a white paper:
- a liquid labelled L
-adropper.

Proceed as follows;
(h) Place the white paper on the drawing board. Place the semicircular glass block on the paper and trace its outline using a pencil.
(i) At the centre of the straight edge of the outline mark a point 0 . Also mark a point X approximately at the centre of the curved edge of the outline as shown in the figure 2.
(j) Place the semicircular glass block op the outline. Push a drawing pin vertically through 0 into the drawing board. Ensure the pin isin .contact with the glass block. Using a dropper, place two or three drops of liquid L on thépin, so that the liquid flows down the pin forming a thin film between the pin and the rertical face" of the glass block.
(k) View the image of thespin from point X through the glass block and move the eye round the curved surface to the right side of X until the image of the pin just disappears from view, (see figure 3)

Using arsecond pin locate and mark a point N on the curved outline at the point where the image just disappears.
(1) Repeat part (k) with the eye moving to the left side of X . Locate and mark the point M on the curved outline where the image just disappears from view.
(m) Draw the lines OM and ON on the outline.
(i) Measure and record angle MON
(ii) If $\mathrm{MON}=2 \mathrm{~A}$, determine q given that Sine $\mathrm{A}=\underline{2} \mathrm{q}$

Question 2

Part A

You are provided with the following:

- a 100ml glass beaker.
- a weighing balance (to be shared).
- a liquid labelled L.
- a measuring cylinder.

Proceed as follows:
(a) Measure and record the mass $\mathrm{M}_{\text {: }}$ of the empty beaker.
M_{1}
(b) Measure and pour 2 ml of liquid L into the beaker. Measure and record the mass of the beaker + liquid L .
(c) Determine the density d: of the liquid L (2 marks)
$\mathrm{d}=$

Part B

You are provided with the following:

- a retort stand, boss and clamp.
- 2 boiling tubes
- a thermometer.
- some distilled water in a beaker labelled W.
- some liquid in a beaker, labelled L
-a large beaker containing some water.
- a measuring cylinder
-a stopwatch
- a tripod stand and wire gauze.
- a cardboard with a hole in the middle.
- a burner.

Proceed as follows:
(d) Clamp one boiling tube on the retort stand. Measure and pour 45 ml of the distilled water (W) into the boiling tube. Setup the apparatus as shown in figure 4.
$(e 9)^{e^{e}}$ Heat-the water in the large beaker until/the' temperature- of the distilled water reaches $85^{\circ} \mathrm{C}$. Remove the boiling tube from the 'hot water by lifting up the retort stand and placing it a way from the burner.
(f) Stir the water in the boiling tube using the thermometer. Record in the table 2 the temperature of the distilled water at intervals of 30 seconds starting at $80^{\circ} \mathrm{C}$ until it drops to 60 ${ }^{\circ} \mathrm{C}$. (Stir the distilled water before taking any reading).
(g) Using the second boiling tube; repeat the procedure in (d), (e) and (f) using 45 ml of liquid L instead of distilled water. Record; your results in the same table.
(h) Using the same axes on the grid provided, plot a graph of temperature (y -axis) against time for :
(i) distilled water W
(ii) liquid L .
(Sable the graphs of Land W).
(i) From the graphs determine
(i) the time t taken for the distilled water to cool from $75^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{G}$.
$\mathrm{t}_{\mathrm{w}}=$ minutes
(ii) The time t taken for liquid L to cool from 75° to $65^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{L}}=$ minutes
both time to come from candidate work / graph within

(j) Determine the constant r given that $4.2 t_{L}$ where d is the density of the liquid L in part (A). (2marks) $\mathrm{c}^{\mathrm{c}^{5}} \mathrm{dt}_{\mathrm{w}}$

- Correct substitution in right $=1 \mathrm{mk}$
- Correct evaluation ta 1 d.p

