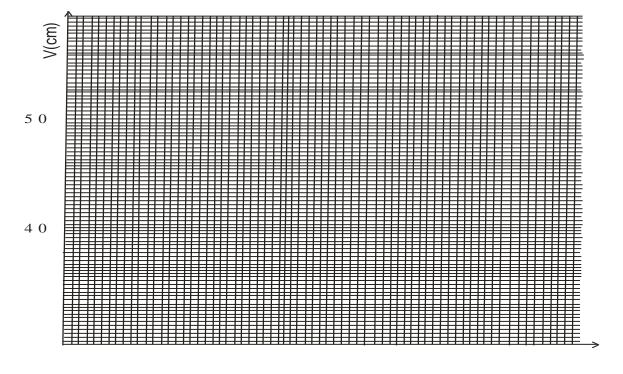
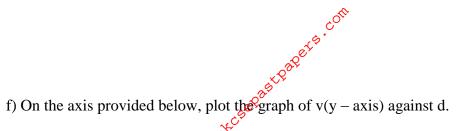

c) Replace lens A with lens B. Fix the plane mirror at the back of lens B. Repeat the procedure in (b) above. Measure the distance between the screen and lens B.

 $\ell_2 = \underline{\qquad \qquad cm}$

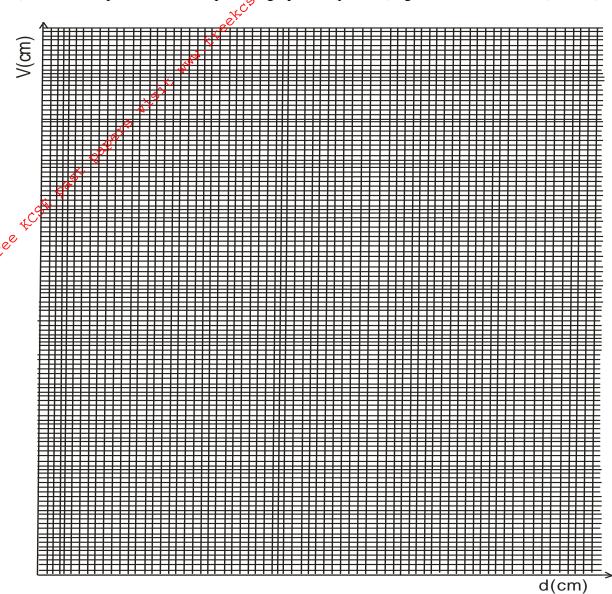
d) Remove the mix or from the lens holder.

Set the distance d between lens A and lens B to be 65cm. Adjust the position of screen II to obtain a sharp image of the cross wires on it. Measure the distance V between lens B and screen II


Repeat the experiment


D(cm)	65	67	69	71	73	77	80
V(cm)							

(7marks)


f) On the axes provided below, plot the graph of v(y-axis) against d.

(3marks)

(3marks)

g) I) From the graph, at d = 70cm. determine;

I. the value of v.

(1mark)

II. the slope S of the graph.

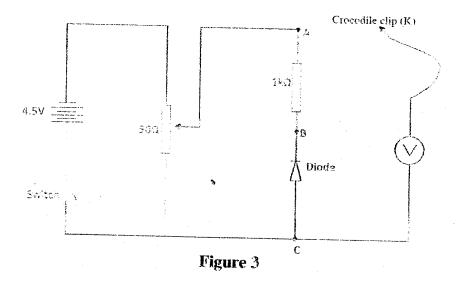
(3marks)

ii) Given that $K = \frac{1}{2}$ determine the value of K_2

(2marks)

iii) determine the value of m given that $m = \underline{S}$

(2marks)


Question 2

You are provided with the following;

- A volumeter
- A diode with ends labelled B and C
- A 1k Ωresistor

A 50Ω potentiometer

- 3 dry cells and a cell holder
- A switch
- 8 connecting wires (at least 4 with crocodile clips)
- Proceed as follows;
- a) Set up the circuit as shown in figure 3.

b) i) Connect the crocodile clip K to point A. Adjust the potentiometer by turning the knob until the voltmeter reading is maximum.

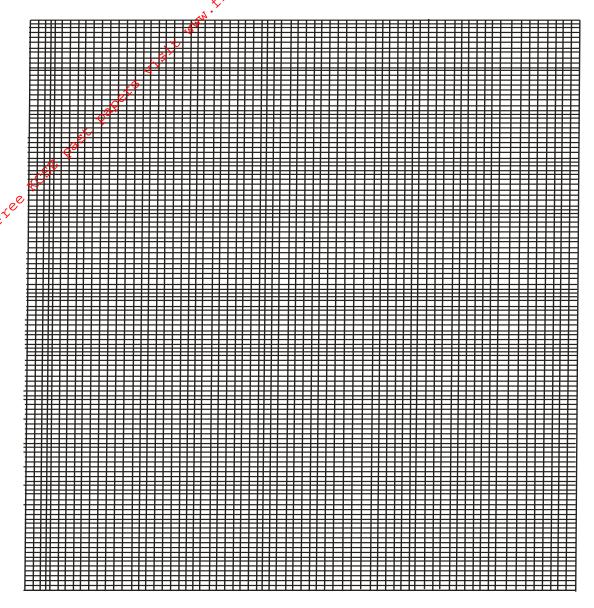
Maximum voltmeter reading = ______ volts. (1mark)

	Derr's
	as XPax
i)	Without adjusting the notartionmeter disconnec
1)	Without adjusting the potentionmeter, disconnec connect it to point B, record the voltmeter reading

ii) Without adjusting the potentionmeter, disconnect the crocodile clip K from point A and connect it to point B. record the voltmeter reading.

Voltmeter reading = ______ volts. (1mark)

iii) Explain why the voltmeter reading in b(i) is different from that in b(ii). (2marks)


Disconnect the crocodile clip K from point B and connect it to point A. Adjust the potectiometer so that the voltmeter reading V_A is 1.0V. Disconnect the crocodile clip K from A and connect it to point B. Record the voltmeter reading V_B.

 $VB = \underline{\hspace{1cm}} volts.$ (1mark)

d) By adjusting the potentiometer to obtain other values of V_A (when K is at A) shown in table 2, repeat the procedure in (c) to obtain the corresponding values of V_B (when K is at B) and complete the table.

$V_A(V)$	V _B (V)	I= () (
1.5		
2.0		
2.5		
3.0		
3.5		
4.0		

c) On the grid provided, plot a graph of I (y – axis) against V_B .

f) Use the graph to determine the resistance of the diode when the current is 0.45A. (3marks)