c) Replace lens A with lens B. Fix theplane mirror at the back of lens B. Repeat the procedure in (b) above. Measure the distance h between the screen and lens B.
$\ell 2=$ \qquad cm
d) Remove the mistor from the lens holder.

Higure 2

Set the distance d between lens A and lens B to be 65 cm . Adjust the position of screen II to obtain a sharp image of the cross wires on it. Measure the distance V between lens B and screen II.

Repeat the experiment

$\mathrm{D}(\mathrm{cm})$	65	67	69	71	73	77	80
$\mathrm{~V}(\mathrm{~cm})$							

On the axes provided below, plot the graph of $\mathrm{v}(\mathrm{y}$-axis) against d.

g) I) From the graph, at $\mathrm{d}=70 \mathrm{~cm}$. determine;
I. the value of v.
(1mark)
II. the slope S of the graph.
ii) Given that $\mathrm{K}=\square$

iii) determine the valuesof m given that $m=\frac{S}{K}$

Question 2
You are providef ${ }^{5}$ with the following;

- A volvimeter
- Axdióde with ends labelled B and C
- ${ }^{2} 1 \mathrm{k}$ תresistor

A 50Ω potentiometer
3 dry cells and a cell holder

- A switch
- 8 connecting wires (at least 4 with crocodile clips)
- Proceed as follows;
a) Set up the circuit as shown in figure 3 .

Figure 3
b) i) Connect the crocodile clip K to point A. Adjust the potentiometer by turning the knob until the voltmeter reading is maximum.

Maximum voltmeter reading $=$ \qquad volts.
ii) Without adjusting the potentionmeter, disconnect the crocodile clip K from point A and connect it to point B. reegrd the voltmeter reading.

Voltmeter reading $=$ \qquad volts.

iii) $\mathrm{E}_{\mathrm{a}}^{\mathrm{x}}$ plain why the voltmeter reading in $\mathrm{b}(\mathrm{i})$ is different from that in b (ii). (2marks)

Disconnect the crocodile clip K from point B and connect it to point A . Adjust the potectiometer so that the voltmeter reading V_{A} is 1.0 V . Disconnect the crocodile clip K from A and connect it to point B . Record the voltmeter reading V_{B}.

VB = \qquad volts.
d) By adjusting the potentiometer to obtain other values of $\mathrm{V}_{\mathrm{A}}($ when K is at A$)$ shown in table 2, repeat the procedure in (c) to obtain the corresponding values of V_{B} (when K is at B) and complete the table.

$\mathrm{V}_{\mathrm{A}}(\mathrm{V})$	$\mathrm{V}_{\mathrm{B}}(\mathrm{V})$	$\mathrm{I}=(-)($
1.5		
2.0		
2.5		
3.0		
3.5		
4.0		

f)

Use the graph to determine the resistance of the diode when the current is 0.45 A .

