Name:	Index No:////
233/1 CHEMISTRY	Candidate's signature:
Paper 1 (THEORY)	Date:
Oct Nov 2013	

THE KENYA NATIONAL EXAMINATIONS COUNCIL

Kenya Certificate Secondary Education

CHEMISTRY ×

Paper 1

2 hours

(THEORY)

2 hours

Instructions to Candidates

(a) Write your name and index number in the spaces provided above.

(b) Sign and write the date of examination in the spaces provided above.

(c) Answer ALL the questions in the spaces provided in the question paper.

(d) KNEC mathematical tables and silent non-programmable electronic calculators may be used.

(e) All working MUST be clearly shown where necessary.

(f) This paper consists of 16 printed pages.

(g) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

(h) Candidates should answer the questions in English.

For Examiner's Use Only

Questi	ions	Maximum Score	Candidate's Score
1 - 2	9	80	(a)

KNEC 02319002 KCSE

The set up below can be used to prepare xygen gas. Study it and answer the questions that 1 follow. Oxygen gas Gas jar Water Beehive shelf Sodium peroxide Identify X. (1 mark) What property of oxygen makes it possible for it to be collected as shown in the above (b) set up? (c) State two uses of oxygen. (1 mark) Write equations to show the effect of heat on each of the following: 2 (a) sodium hydrogen carbonate; (1 mark) (b) silver nitrate; (1 mark) anhydrous iron (II) sulphate. (c) (1 mark)

KNEC 02319002 KCSE

3	Describe an experimental procedure that can be used to extract oil from nut seeds	•
	Freitche	(2 marks)
	Mary E. L.	•••••••••••
	, o ^j X	
7.4		
4 I	n terms of structure and bonding, explain the following observations:	*
40	the melting point of aluminium is higher than that of sodium:	(1½ marks)
stee.		
hore preer		
		92 F 4 2
(b) melting point of chlorine is lower than that of sulphur.	$(1\frac{1}{2} \text{ marks})$
•		
•		

			••••••	***********************	•••••
(b)		in minutes required to de d. (1 Faraday = 96500 co			\$20.
		æ 8		(2 m	arks)
••••••	8	*			••••••

Y Process Z
Polyvinylchloride

(a) Identify:

	(i)	X		(1 mark
	(ii)	Y	50°	(1 mark)
(b)	State	two uses of polyvinylchloride.		(1 mark)

8 Draw a labelled diagram to illustrate how alpha, beta and gamma radiations can be distinguished from each other. (3 marks)

mangan	ate (VII). Explain this o	beervation.	e has no effect on potassium	(2 marks
	num.			
	J. F. X			
	oater			
The fabl	e below gives the solub	ilities of substances T a	and U at 10°C and 40°C.	*
,	Substance	Solubility g/	100g water	Ξ <u>ŭ</u>
		10(°C)	40 (°C)	ix
	Т	40	65	
	U	15	17	8
When an	n aqueous mixture conta	ining 55g of T and 12g	of U at 80°C was cooled to	10°C,
CI y Stais	formed.			
	dentify the crystals forn	ned.		(1 mark
(a) I				
(a)]				
	Determine the mass of the	ne crystals formed.	7	(1 mark
		ne crystals formed.		(1 mark

16	-	
- 8	3	
蓝	ı	

burns in oxygen to form nitrogen gas and steam.

Write an equation for the reaction. (a)

(1 mark)

(b) Using the bond energies given below, calculate the enthalpy change for the reaction in (a) above.

(2 marks)

Bond		Bond energy (kJ per mole)	
$N \equiv N$		944	
N-N	* ₈₀ 78	163	
N-H		388	
O = O		496	
H - O		463	

12

(a) What would be observed if sulphur (IV) oxide is bubbled through acidified potassium manganate (VII)?

- (b) In an experiment, sulphur (IV) oxide was dissolved in water to form solution L.
 - (i) What would be observed if a few drops of barium nitrate solution were immediately added to solution L? (1 mark)
 - (ii) Write an ionic equation for the reaction that occurred between solution L and aqueous barium nitrate in (b)(i) above. (1 mark)

(1 mark)

(b)	Write an equation for the reaction in step IV.	(1 mark)
-----	--	----------

(a)	State the Charles' law.	(1 mark)

(b)	A certain mass of gas occupies 146 dm ³ at 291 K and 98.31 kPa.
	What will be its temperature if its volume is reduced to 133 dm ³ at 101.325 kPa?
	(2 marks)

KNEC 02319002 KCSE

14

4CSE

(a) Identify the contaminants in mixture P.

(1 mark)

(b) Which is the most soluble contaminant in P?

(1 mark)

The curves below represent the change in mass when equal masses of powdered zinc and zinc granules were reacted with excess 2M hydrochloric acid. Study them and answer the question below.

Which curve represents the reaction with zinc granules? Explain your answer. (3 marks)

KNEC 02319002 KCSE

Turn over

913032

(a)	Write the equation for the formation of nitrogen(II) oxide.	(1 mark)
	Mary & 1	
(b)	Give a reason why nitrogen(II) oxide is not formed at room temperature.	(1
	- Page	(1 mark)
ote stee (Ct)	Describe how formation of nitrogen (II) oxide in the internal combustion enleads to gaseous pollution.	ngine (1 mark)
ote		••••••

18 The set-up below was used to investigate the products of burning biogas (methane). Study it and answer the questions that follow.

(a) What product will be formed in test-tube Y? (1 mark)

				×× 11			
	(b) State	e and explair	n the obser	rvations which w	ould be made	in Z.	(2 marks
			210	rygons which w			
	***************************************		ee	•••••			
			57				
			anti ^d		••••••		
			•				
10		(\$	- 13 				
19	(a) Dian	nend and gra	iphite are	allotropes of carb	on. What is	meant by an allotr	
	200						(1 mark)
	Cest Past	• • • • • • • • • • • • • • • • • • • •		••••••			
	Q°			586			
	4C23	·····	•••••				
0	(b) Expl	ain way arar	shite con h	o need oo o labric	omt vuhila dia		
Mote Ete	(b) Lipi	am way grap	nine can o	e used as a lubric	ant while dia	mond cannot.	(2 1)
) Le							(2 marks)
in	25.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0			••••••••••••••		***************************************	•••••••
Y	***************************************			3			
					***************************************	•••••••••••••••••••••••••••••••••••••••	
	*************************	• • • • • • • • • • • • • • • • • • • •			8977		
					=		
						*	
						4, 19	
20	The plots bel	ow were obt	ained whe	en the atomic radi	i of some ele	ments in groups I	and II
	were plotted	against atom	iic number	rs.			
		ĺ			, K		
		(in				9	
		i.			• Ca		
		ins		Na "	- 76232		
		rad	Li∙			•	
J		Atomic radius (nm)	Lit	[●] Mg	14		
		ton	Be *	MIR			
		A	=			W WE	
	ma ²	Ĺ		38			
			Washington Transfer	Atomic number	***************************************		
	Explain:						
			Y · 37	der			
	(a) the tre	nd shown by	' Li, Na an	id K.			(1 mark)
	***************************************	••••••					••••••
	••••••	*******************	••••••		•••••••	••••••	

							83

	OUL	Dia.
	R.	

21

22

(b)

why this process is necessary.

(1 mark)

	(c)	Name one alloy of copper and state its use.	()	mark
	ā	Alloy		
	*******	Use with.	······	********
23		n 15cm ³ of a gaseous hydrocarbon, P, was burnt in 100cm ³ of pus maxture occupied 70cm ³ at room temperature and pressure was passed through potassium hydroxide solution, its vol		
& Lee	(a)	What volume of oxygen was used during the reaction?	(1 1	mark)
	(b)	Determine the molecular formular of the hydrocarbon.	(2 m	arks)

24	A solution was made by dissolving 8.2g of calcium nitra	ate to give 2 litres of solution.
	(Ca = 40.0; N = 14.0; O = 16.0)	

	(Ca = 40.0; N =	= 14.0; O = 16.0).	n og farma
	Determine the	concentration of ditrate ions in moles per litre.	(3 marks)
		<u>,</u>	
	ĵ.	\$	
	× 200		
25		in what would happen if a dry red litmus paper wa	

		Section 2 to the second and the seco	
26	By using aqueo lead ions.	us sodium chloride, describe how a student can di	4

Acid	Rise in temperature (ΔT) K
M	4
N	2

(a)	Which of the acids is likely to be a weak acid? Explain.	
	A STATE OF THE PROPERTY OF THE	

(b) Write the equation for the reaction between ethanoic acid and potassium hydroxide. (1 mark

A student investigated the effect of an electric current by passing it through some substances. The student used inert electrodes, and connected a bulb to the circuit. The table below shows the substances used and their states.

Experiment	Substance	State
1	Potassium Carbonate	Solid
2	Copper (II) sulphate	Solution
3	Sugar	Solution
4	Lead (II) iodide	Molten

(2 marks)

(2 marks)

THIS IS THE LAST PRINTED PAGE

KNEC 02319002 KCSE