Name	Adm No
	Candidate's Signature
	Date

233/1 CHEMISTRY PAPER 1 THEORY 2016 2 HOURS

www.freekcsepastpapers.com Kenya Certificate of Secondary Education CHEMISTRY PAPER 1 THEORY 2 HOURS

INSTRUCTIONS TO CANDIDATES

- (a) Write your name and admission number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) Answer all the questions in the spaces provided.
- (d) Mathematical tables and silent electronic calculators may be used
- (e) All working MUST be clearly shown where necessary.

FOR EXAMINER'S USE ONLY

QUESTIONS	MAXIMUM SCORE	CANDIDATE'S SCORE
1 – 30	80	

In ter	rms of structure and bonding explain why diamond is used in making drill bits.	(2 m
	e the process that takes place when: atural fats or oils are hydrolysed using alkalis.	(½ m
(a) 140 	atural rats of one are nyurorysed using alkans.	(/2 II.
(b) Su	ulphur is added to natural rubber and heated to form cross-links.	(½ m
(C) F	$e^{2+}_{(aq)}$ changes to $e^{3+}_{(aq)}$ (1)	⁄2 marks)
	Then hydrogen and iodine are heated in a sealed container, equilibrium is reache	d
with t	the product hydrogen iodide.	
	$H_{2 (g)} + I_{2 (g)} = 2HI_{(g)};$ $\Delta H = -9.6 \text{ kJ mol}^{-1}$	
m:	Predict the effect of the following on this equilibrium Increasing the temperature	(2 ma
	Increasing the pressure	

(a) State the observations made at the end of the experiment when a mixture of iron power and sulphur is heated in a test tube. (1 mail of the experiment when a mixture of iron power and sulphur is heated in a test tube. (b) Crude oil contains sulphur. What would be the effect to the environment of using fue containing sulphur. A sample of river water is suspected to contain zinc and sulphate ions. Describe how the presence of zinc ions and sulphate ions can be established.	lue solution is obtained as the filtrate. Which metals does the coin	(2
and sulphur is heated in a test tube. (b) Crude oil contains sulphur. What would be the effect to the environment of using fue containing sulphur. A sample of river water is suspected to contain zinc and sulphate ions. Describe how the		
(1 mar) (b) Crude oil contains sulphur. What would be the effect to the environment of using fue containing sulphur. A sample of river water is suspected to contain zinc and sulphate ions. Describe how the		
A sample of river water is suspected to contain zinc and sulphate ions. Describe how the		
A sample of river water is suspected to contain zinc and sulphate ions. Describe how the		
		(1
		(3
(a) State Charles' law.	aw.	(1 1

	(b) A given sample of oxygen gas occupies 16cm ³ at 7°C and 335 mmHg pressure. At what temperature will it occupy 10cm ³ at a pressure of 670 mmHg?	(2 marks)
8.	The data given below was recorded when metal M was completely burnt in air. M is not the actual symbol of the metal. (R.A.M; M = 56, O = 16) Mass of empty crucible and lid = 10.240g Mass of crucible, lid and metal M = 10.352g Mass of crucible, lid and metal oxide = 10.400g	
	(a) Determine the mass of; (i) Metal M	(½ mark)
	(ii) Oxygen	(½ mark)
	(b) Determine the empirical formula of the metaloxide.	(2 marks)

(b) Calculate the value of X. (C = 12.0, Mg = 24.0, O = 16.0)	(2 r
(b) Calculate the value of X. ($C = 12.0$, $Mg = 24.0$, $O = 16.0$)	(2 r
Bromine reacts with iron to form iron (III) bromide whereas iodine reacts with iron to form iron (II) iodide. Explain.	(2
Four solutions of pH 7, 2, 8.5 and 13 were reacted with calcium turnings. In which of solutions would hydrogen gas be produced. Explain each case.	the (3

(a) Name the bonds.

X	(½ mark)

(b) Using dot (.) and cross (x) diagram, show the bonding in the compound phosphonium ion, pH_4^+ . (P = 15.0, H = 1.0)

(2 marks)

13. Butan-1-ol excess conc. H_2SO_4 $140^{0}C$ A $H_{2(g)}$ B $Ni_{(s)}$

14.	An excess of zinc powder was added to 100cm^3 of 0.5M copper (II) sulphate solution and the temperature changed from 20^0C to 26.5^0C . Calculate the molar heat of reaction given that the specific heat capacity of water = $4.2 \text{ J g}^{-1} \text{ k}^{-1}$ and the density of the solution	
	is 1gcm ⁻³ .	(3 marks)
15.	The ionization energies for three elements A, B and C are shown in the table below. Element A B C	
	Ionization energy (kJmol ⁻¹) 492 520 415	
	(a) What is meant by ionization energy?	(1 mark)
	(b) Which element is the strongest reducing agent? Give a reason.	(1 ½ marks
16	Starting with 50 cm ³ of 2 9M and iron hydroxide describe how a sample of none and iron	
16.	Starting with 50cm ³ of 2.8M sodium hydroxide, describe how a sample of pure sodium sulphate crystals can be prepared.	(3 marks)

	s hydrogen gas was passed over heated copp te the observation made in the combustion t		(1 mark)
(b) Wr	rite an equation for the reaction that took pla	ce in the combustion tube.	(1 mark)
(c) Na	ame one industrial use of hydrogen.		(1 mark
	s used for boiling hard water are normally conat is the chemical name for the boiler scale		e. (1 mark)
(b) Ho	ow is the boiler scale removed?		(1 mark)
(c) Sta	ate any one advantage of using hard water.		(1 mark
The tal	ble below show the tests carried out on a sar	nple of water and the results obtained.	
I	Tests Addition of sodium hydroxide solution drop wise until in excess	Observations White precipitate which dissolved in excess	
III	Addition of excess aqueous ammonia Addition of dilute hydrochloric acid followed by barium chloride	Colourless solution obtained White precipitate	

(a) Identify the anion present in water.	(1 mark)

21. The below show the mass spectrum of element

- 22. (a) Name two ores of zinc metal. (1 mark)
 - (b) What is the role of coke in the smelting furnace during industrial extraction of zinc. (1 mark)
- 23. The diagram below shows a set-up for the laboratory preparation of dry chlorine gas. Conc. Hydrochloric acid $\,$ MnO $_2$

	nc oxide reacts with both acids and alkalis.) Write the equation for the reaction between zinc oxide and: (i) Dilute hydrochloric acid.	(1 n
	(ii) Sodium hydroxide solution.	(11
(b)) What property of zinc oxide is shown by the reactions in (a) above?	(11
	Explain how the rates of diffusion for equal quantities of nitrogen and oxygen compare oder the same conditions. ($N = 14$; $O = 16$) Show your working.	(3:
Ex	xplain why group II elements are generally less reactive than group I elements.	(2)

Write an eq	uation for this change.	(1 mar
(b) Given 1g of ²¹	⁴ Po; how much of it would be left after 3×10^{-4} seconds. (Half life Po = 1.5×10^{-4} seconds)	(1 mai

(c) Give one difference between nuclear and chemical reactions.	(1 mark)	

Bond	Bond energy (kJmol ⁻¹)
C - H	413
O = O	498
C = O	740
O - H	464

29. Calculate the volume o sulphuric acid of 0.2M concentration needed to neutralize completely 25.0cm³ of potassium hydroxide solution whose concentration is 0.5M. (3 marks)

30. Use the half cell reactions and standard electrode potentials given below to show that chlorine can displace iodine from a solution containing iodide ions. (3 marks Half-cell equation $E^{\theta}(\text{Volts})$ $Cl_{2 (g)} + 2e^{-} \longrightarrow 2 Cl_{(aq)}^{-} + 1.36$ $I_{2 (s)} + 2e^{-} \longrightarrow 2 I_{(aq)}^{-} + 0.54.$