Name	Adm No
	Candidate's Signature
	Date

233/2 CHEMISTRY PAPER 2 THEORY TERM 1 2016 2 HOURS

www.freekcsepastpapers.com Kenya Certificate of Secondary Education CHEMISTRY PAPER 2 THEORY 2 HOURS

INSTRUCTIONS TO CANDIDATES

- (a) Write your name and admission number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) Answer all the questions in the spaces provided.
- (d) All working MUST be clearly shown.
- (e) Non-programmable silent electronic calculators and KNEC mathematical tables may be used.

FOR EXAMINER'S USE ONLY

QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
1	14	
2	12	
3	11	
4	11	
5	11	
6	11	
7	11	
TOTAL SCORE	80	

1.	(a)	The diagram below shows a set-up used by a students in an attempt to prepare an oxygen gas.	nd collect
	Water	Solid W Water	
	(i) Con	mplete the diagram by correcting the mistakes on it.	(2mark s)
	(ii) Ide	entify solid W	(1 mark)
(b) A	piece of	f phosphorus was burnt in excess air. The product obtained was shaken with a	
	amount	of hot water to make a solution. ite an equation for the burning of phosphorus in excess air.	(1 mark)
	(1) VV1	ne an equation for the burning of phosphorus in excess air.	(1 mark)
	(ii) Th	ne solution obtained in (b) above was found to have a pH of 2. Give reasons for	
		pservation.	(2 marks)
(c) E	xplain w	why cooking pots made of aluminium do not corrode easily when exposed to air.	(2 marks)
		on between sulphur (IV) oxide and oxygen to form sulphur (VI) oxide in the contacthermic.	act
Proce	55 15 CAO	$2SO_{2(g)} + O_{2(g)} \longrightarrow 2SO_{3(g)}$ $\Delta H = -ve$	

and temperature between $400 - 500^{\circ}$ C)	sure
(i) What is meant by an exothermic reaction?	(1 mark)
(ii) How would the yield per day of sulphur (VI) oxide be affected if temperature lower than 400°C are used. Explain.	(2 marks
(iii) All the sulphur (VI) oxide produced was absorbed in concentrated sulphuric (VI)	
acid to form oleum.	
Calculate the mass of oleum that was produced per day.	
(S = 32, O = 16, H = 1)	(3 marks
(a) Give the IUPAC names of the following compounds.	
(i) CH ₃ COO CH ₂ CH ₃	(1 mark)
	,
(ii) $CH_2 = C - CH CH_3$	

2.

The structure below shows some reactions with ethanol. Study it and answer (b) the questions that follow. Reagent R CH₃ COOH NaOH_(aq) CH₃COONa Heat Step II CH₃ COOH CH₃ CH₂ OH CH_4 $H_2SO_{4(1)}$ Step I Excess Cl₂ / UV $CH_2 - CH_2$ Step III $CH_2 = CH_2$ CH₃CH₃ Compound U

(i) Write the	formula of	the o	rganic o	compo	ounds P	and S
(1) write the	Iomiuna on	me c	ngame (Jonnbe	Junus 1	and S.

P _____

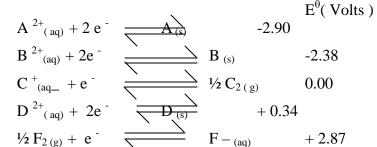
- (ii) Name the type of reaction, the reagent (s) and condition for the reactions in the following steps" (3 marks)
 - Step I I)
 - Step II _____ II)
 - Step III _____ III)
- (iii) Name reagent R _____ (1 mark)
- (iv) Draw the structural formula of T and give its name. (1 name)

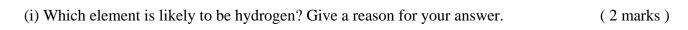
	(vi) State why C ₂ H ₄ burns with a more smoky flame than C ₂ H ₆ .	(1 mark
3. (a)	In the preparation of carbon (IV) oxide in the laboratory, dilute hydrochloric acid is marble chips. The gas is then passed through water and collected by downward del	
	(i) What observations are made when the acid is added to the marble chips.	(1 mark
	(ii) Why is hydrochloric acid preferred to sulphuric acid in the above reaction?	(1 mark
	(iii) Why is the gas passed through water before collection?	(1 mark

II) If the relative molecular mass of U is 42000, determine the value of n. ($C=12,\,H=1$)

(2 marks)

while sodium hydroxide is not used.	V) oxide (1 marks
The figure below was used to investigate the effect of carbon (II) oxide on co Dry carbon (II) oxide Hard glass tube Copper (II) oxide Glass wool Z L	
(i) On the diagram, indicate what should be done for the reaction to occur.	(1
(i) On the diagram, indicate what should be done for the reaction to occur.(ii) Write an equation for the reaction that occurs in the hard glass tube.	(1 (1
(ii) Write an equation for the reaction that occurs in the hard glass tube.	(1
(ii) Write an equation for the reaction that occurs in the hard glass tube.	(1
(iii) Write an equation for the reaction that occurs in the hard glass tube. (iii) Name liquid M and state its use.	(1
(ii) Write an equation for the reaction that occurs in the hard glass tube.	(1


(i) Study the information given below and answer the questions that follow. Element			xides that react	us copper (II	, om u e o , e.		(1 r
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(i) Study	the informati	on given helow	and answer	the questions that	follow	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					oxide (°C)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		+					
G 0.381 0.446 G ₂ O ₅ 242 J 0.762 0.676 JO 1054					+		
J 0.762 0.676 JO 1054		+			+		
	(1) White		——————————————————————————————————————				
	(ii) Expl	ain why the m	elting point of	the oxide of	E is higher than th	at of the oxide of G.	(2 m
(ii) Explain why the melting point of the oxide of E is higher than that of the oxide of G. (2 is							
(ii) Explain why the melting point of the oxide of E is higher than that of the oxide of G. (2 is							
	(ii) Expl	ain why the m	elting point of	the oxide of	E is higher than th	at of the oxide of G.	(2
		. 1 4	1	.1 .1 .6:			····
	(ii) Expl	ain why the m	elting point of	the oxide of	E is higher than th	at of the oxide of G.	(2 m
(ii) Explain why the melting point of the oxide of E is higher than that of the oxide of G. (2 is							
(ii) Explain why the melting point of the oxide of E is higher than that of the oxide of G. (2 is							
(ii) Explain why the melting point of the oxide of E is higher than that of the oxide of G. (2 is							

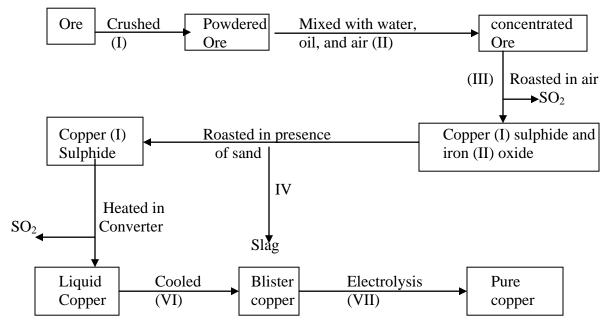

(b) Study the information below and answer the questions that follow. The letters do not represent the actual symbols of the elements.

Element	Electronic configuration	Ionization energy	y (kJ / mole)
		1 st I.E	2 nd I.E
X	2.2	900	1800
Y	2.8.2	736	1450
Z	2.8.8.2	590	1150

(i) What chemical family do the elements X,Y and Z belong?	(1 mark)
(ii) What is ionization energy?	(1 mark)
(iii) The 2 nd ionization energy is higher than the 1 st ionization energy of each. Explain.	(1 mark)
(iv) When a piece of element Z is placed in cold water, it sinks to the bottom and an	
effervescence of colourless gas that burns explosively is produced. Use a simple diagram to illustrate how this gas can be collected during this experiment. (2 ms	arks)

5. Use the standard electrode potentials for elements A,B, C, D and F given below to answer the questions that follow. The letters do not represent the actual symbols of the elements.

(1 mark)


(iii) In the space provided, draw a labeled diagram of the electrochemical cell that would be obtained when half-cells of elements B and D are combined. (3 marks)

(iv) Calculate the E^{θ} value of the electrochemical cell constructed in (iii) above. (1 mark)

b)	During the electrolysis of aqueous copper (II) sulphate using copper electrodes, a current of 0.2 amperes was passed through the cell for 5 hours.	
	(i) Write an ionic equation for the reaction that took place at the anode.	(1 mark)
		

(ii) Determine the change in mass of the anode which occurred as a result of the electrolysis process. (Cu = 63.5, 1 Faraday = 96500 coulombs). (3 marks)

6. The diagram below is a flow chart for the extraction of copper. Study it and answer the questions that follow.

Vrite the formula of the major ore of copper metal.	(1 ma
	

(b) Name process (II)	(1 mark)
(c) Give an equation for the reaction that occurs in stage (III).	(1 mark)
(d) Explain what happens in stage (IV).	(2 marks)
(e) Write half cell equations for the reactions occurring at the anode and cathode in stage (VII).	(1 marks)
(f) Draw a simple diagram showing the set-up that is used in electrolytic purification of copper.	(2 marks)
(g) A green rocky material is suspected to be malachite, CuCO ₃ . Cu (OH) ₂ . Describe how the presence of copper can be ascertained. (3 management of the presence of copper can be ascertained).	rks)

7. (a) The count rate for a sample of the beta emitter, lead -224 are as shown in the table below.

Counts per minute	150	113	85	64	48	38	28	23	19
Time (min)	0	8	16	24	33	40	48	56	64

(i) Plot a graph of counts per minute against time for lead -224.

(3 marks)

' .	(11) What is the half life of lead -224?	(1 mark)
	(iii) After how many minutes was count rate 70 counts per minute?	(1 mark)
	(iv State two uses of radioactivity in medicine.	(2 marks)
(b)	(i) State two differences between nuclear and chemical processes.	(2 marks)
	(ii) The half-life of a radioactive element is 60 days. Find the time taken for its activity to drop from 4800 counts per minute to 150 counts per minutes. (2 m	narks)