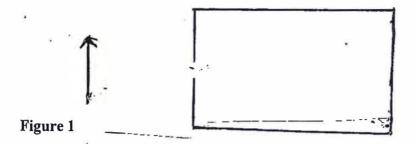
PHYSICS PAPER 2 (Theory) JULY/AUG. 2016 2 HOURS

Name	Index Number	/
AdmClass:Candidate's Signature	Date	•••••

INSTRUCTIONS TO CANDIDATES

- *i)* Write your name, admission number and index number in the spaces provided above.
- *ii)* Sign and write the date of examination in the spaces provided above
- iii) This paper consists of TWO sections A and B
- iv) Answer ALL the questions in section A and B in the spaces provided
- v) All working **MUST** be clearly shown
- vi) Electronic calculators and mathematical tables may be used.
- vii) ALL numerical answers must be expressed in decimal notation.
- viii) This paper has 13 pages. It is the responsibility of the candidate to ascertain that all the pages are printed as indicated and that no questions are missing.
- ix) Candidates should answer the questions in English.

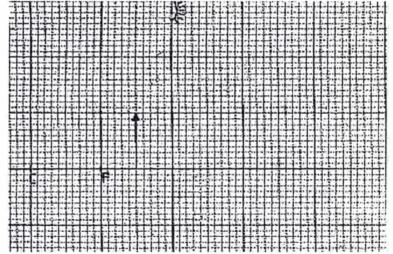

For Examiners Use Only

Section	Question	Maximum Score	Candidate's Score
Α	1 – 12	25	
	13	13	
В	14	13	
	15	13	
	16	8	la l
	17	8	
	TOTAL	80	

SECTION A (25 marks)

Answer ALL the questions in this section in the spaces provided.

1 Figure 1 shows an object placed in front of a pinhole camera.



Sketch the rays to show the formation of an image in the camera (2 marks)

2 The current carrying capacity of an accumulator is 50Ah. Find the amount of current flowing if the accumulator is used for 60 minutes (2marks)

.....

3 The figure shows an object placed in front of a concave mirror of focal length 10cm. C is the centre of curvature.

On the same figure draw a ray diagram showing the location of the image.

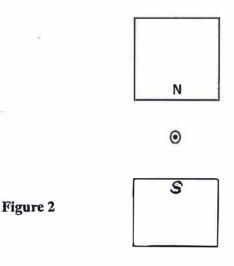
(3marks)

4 The velocity of light in air is 3x10⁸m/s and in water is 2.25x10⁸m/s. Determine the angle of refraction of light in water from a ray of light passing from air to water at an angle of incidence of 30⁰ (2 marks)
5 A siren has 200 holes and makes 30 revolutions per minute. If the speed of sound waves produced is 340m/s, determine the wavelength of sound produced. (2 marks)

.....

6 Draw the resultant magnetic field pattern around the following current carrying conductor. (2 marks)

7	Distinguish between p-type and n-type semiconductors.	(1 mark)	
		••••••	


8	a) State the adjustment to be made in an X-ray tube to increase the quality of X –rays produced. (1 mark)
	b) An X-ray tube has an accelerating voltage of 50KV. Determine the shortest wavelength of X-ray beam. (Planck's constant = 6.64×10^{-34} Js, electron Charge= 1.6×10^{-19} C and velocity of electromagnetic waves C= 3×10^{8} m/s) (3marks)
9	State the reason why radio waves signals are easier to receive than TV (television) signals in a place surrounded by hills. (1 mark)
	۰. ۲۰۰۰
10	State the function of the grid in a Cathode ray oscilloscope.
11	(a) An electric bulb is labelled 100W 240V. What does this mean? (1mark)

10

(b) Two light bulbs are labelled 40W 240V and 100W 240V. Determine the cost of using the two bulbs for six hours daily for 5 days given that the cost of electricity is 40 cents per kilowatt hour. (2marks)

.....

12 Figure 2 shows a current carrying conductor placed in a magnetic field.

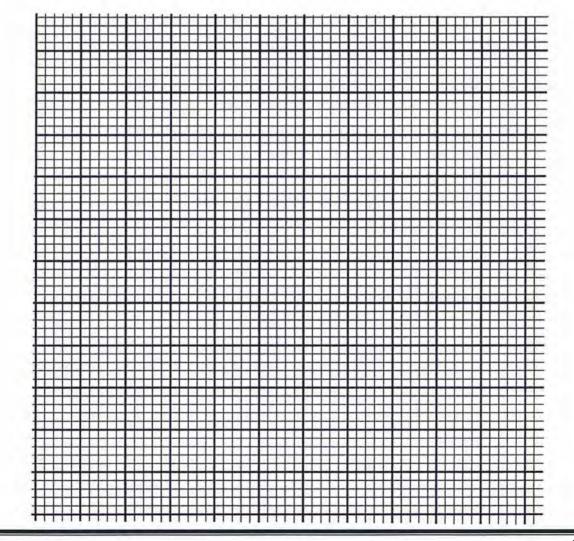
i) Sketch the resulting magnetic field pattern (1mark)

ii) On the diagram show the direction of the force(1mark)

SECTION B (55 marks)

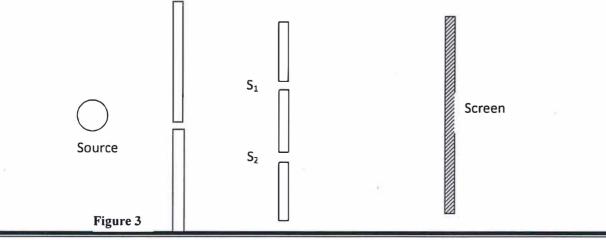
Answer ALL the questions in this section in the spaces provided.

13 a) Define the term work function (1mark)

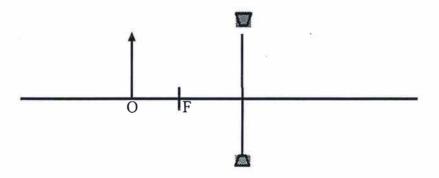

······

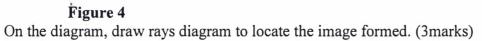
b) The table below shows the value obtained by form 4 students while investigating how maximum kinetic energy of the photoelectrons, emitted from a zinc cathode, varies with the frequency of the incident radiation.

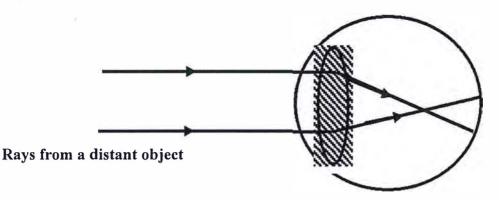
K.E. X 10 ⁻¹⁹ J	0.5	1.0	1.5	2.0	2.5	3.0	3.5
Frequency f (X 10 ¹⁴⁾ Hz	4.7	5.9	7.0	8.3	9.5	10.7	11.9


i) Plot a graph of *K.E.* against frequency, f.

(5marks)


From the graph determine:


- The threshold wavelength of the metal Zinc (speed of light = 3×10^8 m/s). ii) (2marks) iii) The Planck's constant. (3marks) State two factors that affect photoelectric effects of a given metal surface. (2marks) c)
- a) In an experiment to observe interference of light waves a double slit is placed close to a monochromatic source of light as shown in figure 3.

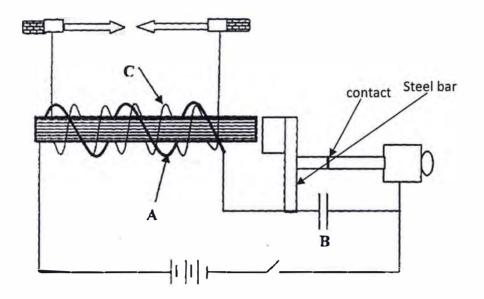

i)	State the function of the double slit	(1 mark)
		••••••
ii)	State what is observed on the screen	(3marks)

iii)	State what is observed on the screen when the slit separation S_1S_2 is reduced	(1 mark)
		•••••

(b) **Figure 4** shows an object O placed in front of a diverging lens whose principal focus is F.

(c) Figure 5 shows a defective eye focusing a distant object.

On the same diagram, sketch the appropriate lens to correct the defect and sketch the rays to show the effect of the lens. (2marks)


d) A real image twice the size of an object is formed by a lens. If the distance between the

object and the image is 45cm, determine focal length of the lens. (3marks)

15 a) Define the term mutual induction (1mark)

.....

b) Figure 6 shows an induction coil used to produce sparks.

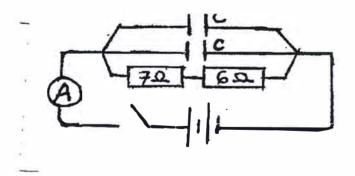
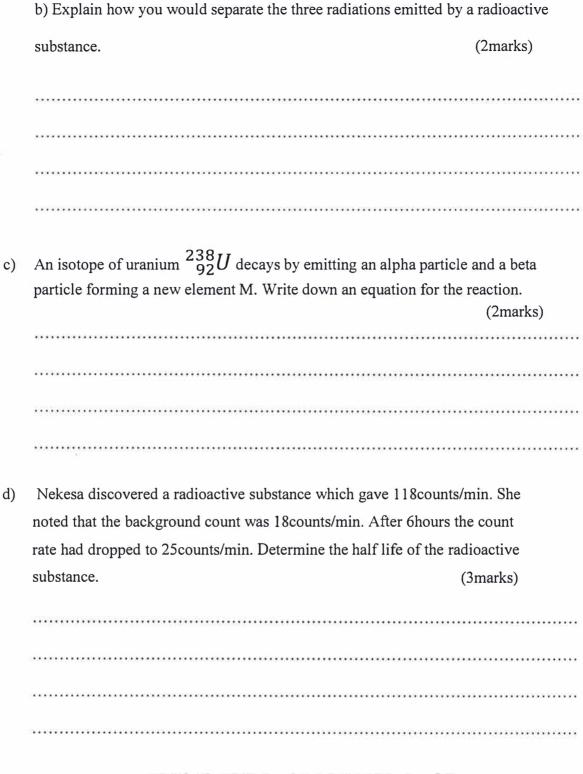


Figure 6 (i) Name parts labeled A, B and C (3marks) A..... B C..... (ii) Briefly explain how the induction coil works. (4marks)

c) A transformer is used on a 240V a.c supply to deliver 12A at 120V to a heating coil.
 Given that 20% of energy taken from the supply is dissipated in the transformer.
 Determine the current in the primary coil. (3marks)

d) Account for two causes of the 20% energy dissipation in the transformer above. (2marks)


16 In the circuit diagram shown in Figure 7, each cell has an e.m.f of 1.5v and internal resistance of 0.2Ω . The capacitance of each capacitor is 2.0μ F.

When the switch is closed, determine the:

	i)	effective capacitance in the circuit.	(1 mark)
			•••••
	ii)	ammeter reading	(2 marks)
	iii)	charge on each capacitor	(3 marks)
	iv)	potential difference across the 6Ω resistor	(2 marks)
17	а) Define radioactivity.	(1mark)

THIS IS THE LAST PRINTED PAGE