Name: \qquad
\qquad
Class \qquad Candidate's Signature: \qquad Date. \qquad
232/3
PHYSICS - PRACTICAL
TIME: $2 ½$ HRS

KAMDARA JOINT - 2016

Instructions

- Write your name, admission number, class and signaturesin the spaces provided at the top of the page.
- Answer all the questions in the spaces provided in this paper.
- You are supposed to spend the first 15 minutes of the $2 \frac{1}{2}$ hours allowed for this paper reading the whole paper carefully before your start.
- Marks will be given for clear record of observations actually made, for their suitability and accuracy, and the use made of them.
- Candidates are advised to record their observations as soon as they are made.
- Electronic calculators and mathematical tables may be used.

EOR EXAMINER'S USE ONLY

Question(s) (s)	Maximum Score	Candidate's Score
2	20	
	a)	16
TOTAL	4	

This paper consists of $\mathbf{1 0}$ printed pages. Candidates are advised to check and to make sure all pages are printed.

- a rectangular glass block
- 4 optical pins
- a soft board
- a plain paper

Proceed as follows:
(a) Place the glass block on the plain paper with one of the largest face upper most. Trace round the glass block using a pencil as shown below.

(b) Remove the glass block and construct a normal at B. Construct an incident ray AB of angle of incidence, $\mathrm{i}=20^{\circ}$.
(c) Replace the glass block and trace the ray ABCD using the optical pins.
(d) Remove the glass block and draw the path of the ray ABCD using a pencil. Measure length L and record it in the table below.

(6 marks)
(e) Repeat the procedure aboye for the angles of incidence given.
(f) Calculate the value of L^{2} and $\frac{1}{L^{2}}$; Record in the table.
(g) Plot a graph of $\frac{1}{L^{2}}$ (y-axis) against $\operatorname{Sin}^{2} i$.(5 marks)
l_{c}
(h) Calculate the gradient, S.
\qquad
\qquad
\qquad

Given that the equation of that graph is: $\frac{1}{L^{2}}=-\frac{1}{n^{2} b^{2}} \cdot\left(\operatorname{Sin}^{2} i+\frac{1}{b^{2}}\right)$
(i) Determine the $\frac{1}{L^{2}}$ - intercept C and the $\operatorname{Sin}^{2} i$ - intercept B.

C = \qquad (1 mark)

B = \qquad
(2 marks)

$$
Q=-\left(\frac{C}{s}\right) \div B
$$

(k) Hand in your censtructions on the plain paper together with the answer script. (2marks)

QUESTION 2

PART A

You are provided with the following:

- Two dry cells and a cell holder
- One voltmeter ($0-5 \mathrm{~V}$)
- One ammeter ($0-1 \mathrm{~A}$) or ($0-2.5 \mathrm{~A}$)
- Six resistors labeled AB
- One resistor labeled R
- A switch
- 7 connecting wires
(a) Set up the circuit as shown in figure 2

FIG 2
(i) Close the switch, s. Read and record the voltmeter and ammeter readings
$\mathrm{V}=$ \qquad volts
$\mathrm{I}=$ \qquad Amperes
(ii) Determine the value of R given that $R=\frac{V}{I}$
\qquad
\qquad
\qquad
(b) Set the circuit as shown in figure 3

(i) With the crocodile clip across resistor 1 as shown in figure 3 above, close the switch, read and record the ammeter and voltmeter readings in table.
(ii) Repeat the procedure b (i) with erocodile clips across resistors 2, 3, 4, 5 and 6 respectively, each time recording the corresponding val@es for V and I in table 2

Number of resistors	1	2	3	4	5	6
p.d. (volts)						
Current I (Amperes)						

Table 2
(4mks)
(c) On the grid provided plot the graph of p.d (V) (y axis) against I (A)

(d) Determine the slope of the graph at:
(i) $\mathrm{p} . \mathrm{d}=2.5 \mathrm{~V}$ (2mks)
\qquad
\qquad
\qquad
\qquad
(ii) $\mathrm{p} . \mathrm{d}=2.8 \mathrm{~V}$
(2mks)
\qquad
\qquad
\qquad
\qquad
(iii) What physical quantity is represented by the slope of your graph at any one point? (1mk)

PART B

You are provided with the following;

- Half-metre rule ${ }_{j}$
- Knife edge (raísed)
- A thread (approx. 20 cm in form of a loop)
- 50 g maş
(a) Determine the c.o.g of the half-metre rule.

$$
\text { c.o.g. }=\ldots \mathrm{cm} \text { mark. }
$$

(1 mark)

(b)

(i) Pivot the rule at 15 cm mark and balance it with the mass as shown. When it is well balanced, note and record the position of the 50g mass;
(1 mark)
Position of 50 g mass $=$ \qquad ocm mark
(ii) Use your results to determine the weight of the rule.
(2 marks)

