$\qquad$
DATE: $\qquad$

233/3
CHEMISTRY
PAPER 3
PRACTICAL
JUNE 2016
$21 / 4$ Hours

# KASSU <br> JOINT EVALUATION TEST - 2016 <br> Kenya Certificate of Secondary Education (K.C.S.E) 

233/3
CHEMISTRY
Paper 3
Time: $21 / 4$ Hours

## INSTRUCTIONS TO CANDIDATES

- Write your name and Index Number in the spaces provided above.
- Sign and write date of examination in the spaces provided above.
- Answer all questions in the spaces provided in the question paper.
- All workings must be clearly shown where necessary. Mathematical tables and silent electronic calculators may be used.

For Examiners use only.

| Question | Maximum Score | Candidates Score |
| :--- | :--- | :--- |
| 1 | 14 |  |
| 2 | 13 |  |
| 3 | 13 |  |

This paper consists of 6 Printed pages.
Candidates should check the question paper to ensure that all the
Papers are printed as indicated and no questions are missing

1. You are provided with:

Solution M containing 3.95g Potassium Manganate (vii), ( $\mathrm{KMnO}_{4}$ ) per litre of solution.
Solution N, containing 49.0g of ammonium Ferrous Sulphate $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} . \mathrm{FeSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ per litre of solution.

You are required to determine the reacting mole ratio of manganate (VII) Ions, $\mathrm{MnO}_{4}$ with Iron (II) ions $\mathrm{Fe}^{2+}$.

## PROCEDURE:

Using and pipette filter transfer $25.0 \mathrm{~cm}^{3}$ of solution N into a conical flask. Titrate with solution M in the burette. No indicator is required for this experiment. Record your results in the table below. Repeat the procedure to obtain the accurate volumes.

## Table I

|  | $1^{\text {st }}$ | $2^{\text {nd }}$ | $3^{\text {rd }}$ |
| :---: | :---: | :---: | :---: |
| Final burette readings $\mathrm{cm}^{3}$ |  |  |  |
| Initial burette readings $\mathrm{cm}^{3}$ |  |  |  |
| Volume of solution M used $\mathrm{cm}^{3}$ |  | $2^{10}$ |  |

a) Determine the average volume of solution M used.
b) Calculate:
i) The concentration of sodution $M$ in moles per litre. $(\mathrm{K}=39, \quad \mathrm{Mn}=55, \quad \mathrm{O}=16) \quad(1 \mathrm{mk})$
ii) The number of moles of solution M that reacted with N
iii) The concentration in moles per litre of solution N in moles per litre (1mks) ( $\mathrm{Fe}=56, \mathrm{~S}=32, \mathrm{~N}=14, \mathrm{H}=1$ )
iv) The number of moles of solution N that reacted with solution M in this experiment (2mks)
c) Given that 1 mole of solution M gives 1 mole of $\mathrm{MnO}_{4}{ }^{-}$ions and 1 mole of solution N gives 1 mole of $\mathrm{Fe}^{2+}$ ions. Calculate the reaction mole ratio of $\mathrm{Fe}^{2+}$ ions to $\mathrm{MnO}_{4}^{-}$ions (3mks)
2. You are provided with:

Solution WI - containing 40 g of substance Y per litre.
Solution WII - 1M hydrochloric acid solution.
You are required to investigate experimentally the rate of reaction of Y with hydrochloric acid. Y reacts with hydrogen ions in the hydrochloric acid to give a final yellow precipitate. You will in each experiment measure at room temperature, the tiffie taken to produce a certain amount of precipitate that will make the cross on the white piéce of paper just invisible.

## PROCEDURE

On the white piece of paper, make ascross using a pen. Measure $10 \mathrm{~cm}^{3}$ of solution $\mathrm{W}_{\mathrm{I}}$ using a $10 \mathrm{~cm}^{3}$ measuring cylinder provided and put into $100 \mathrm{~cm}^{3}$ glass beaker provided and place on the cross. The cross should be visible through the solution from a view point directly above the beaker. Using another measuring cylinder transfer $10 \mathrm{~cm}^{3}$ of the acid $W_{\text {II }}$ to the beaker containing $\mathrm{W}_{\mathrm{I}}$ and start the stopwafch immediately after the addition. Looking from above the beaker, stop the watch as soon as ${ }^{\text {the }}$ cross becomes invisible. Enter the time taken in the table below. Repeat the experiment đising the volumes indicated in the table below each time adding appropriate quantity of distilled water to make up the volume to $10 \mathrm{~cm}^{3}$ before adding $10 \mathrm{~cm}^{3}$ of solution $\mathrm{W}_{\mathrm{II}}$.

| xpt. No | Vol. of $\mathbf{W}_{\mathbf{I}}$ used $\mathbf{c m}^{\mathbf{3}}$ | Vol. of water $\mathbf{c m}^{\mathbf{3}}$ | Vol. of $\mathbf{W}_{\text {II }} \mathbf{c m}^{\mathbf{3}}$ | Time Seconds |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 10 | 0 | 10 |  |
| 2 | 8 | 2 | 10 |  |
| 3 | 6 | 4 | 10 |  |
| 4 | 4 | 6 | 10 |  |
| 5 | 2 | 8 | 10 |  |

a ) Plot a graph of volume $W_{I}$ against time in seconds (provided graph paper)
b) From your graph, state how the volume of $\mathrm{W}_{\mathrm{I}}$ varies with time
c) What time would $7.0 \mathrm{~cm}^{3}$ of $\mathrm{W}_{\text {I }}$ take to react with $10 \mathrm{~cm}^{3}$ of $\mathrm{W}_{\text {II }}$
d) State two factors which must be kept constant during the experiment
e) Could the time taken for experiment be shorter or longer if temperature of reacting mixture was at (i) $50^{\circ} \mathrm{C}$ ? Sketch a graph on the same axis that would appear for this experiment.( 3 mks )
3. You are provided with solid F. Carry out the tests below: Record your observations and inferences in the spaces provided.
a) Place about half of solid F on a metallic spatula and burnt it using a non-luminous flame
 (1mk)
b) Place the remaining solid F in a clean boiling tube and add about $10 \mathrm{~cm}^{3}$ of water and shake thoroughly.
i) To about $2 \mathrm{~cm}^{3}$ of the solution F , put the universal indicator solution provided.

ii) To about $2 \mathrm{~cm}^{3}$ of solution F , add $2 \mathrm{~cm}^{3}$ of acidified potassium dichromate (VI) and warm to boiling

iii) To about $2 \mathrm{~cm}^{3}$ of solution F , add three drops of bromine water


You are provided with solid P. Carry out the tests below and record your results in the table.

1. (i) Place all solid $P$ in a boiling tube. Add about $10 \mathrm{~cm}^{3}$ of distilled water and shake vigorously, filter and keep both the residue and filtrate.

(ii) To about $2 \mathrm{~cm}^{3}$ of the filtrate add sodium hydroxide dropwise till in excess.

| Observations | Inferences |
| :--- | :--- |
|  |  |
|  |  |

2. (a) (i) To about $2 \mathrm{~cm}^{3}$ of the filtrate add ammonia solution till in excess.

(ii) To about $2 \mathrm{~cm}^{3}$ of the filtrate add four drops of solution K (lead (II) Nitrate)

| Observations | Inferences |
| :--- | :--- |
| $(1 / 2 \mathrm{mk})$ | $(1 / 2 \mathrm{mk})$ |

(b) Carefully transfer the residue into a test tube and add $5 \mathrm{~cm}^{3}$ of dilute niric (V) acid.
(i) To about $2 \mathrm{~cm}^{3}$ of the solution add a few drops of dilute sulphuric (VI) acid.

(ii) T o about $2 \mathrm{~cm}^{3}$ of the solution add ammonia solution drop wise till in excess.

| Observations | Inferences |
| :--- | :--- |
|  |  |
|  | $(1 / 2 \mathrm{mk})$ |

