232/1,232/2,232/3 physics **BURETI SUB-COUNTY JOINT EVALUATION TEST** PHYSICS Paper 1 July/August 2016 **MARKING SCHEME SECTION A :** 1.  $20.3 \text{ cm}^3$  - (0.1 x 50) cm<sup>2</sup> 1.25 20.3 - 5 = 217.6m  $= 15.3 \text{ cm}^{3}$ 11. Transformation of heat to and from other forms of energy 2.  $K_1 = \underline{F} = \underline{5} = 2.5 \text{Ncm}^{-1}$ **SECTION B** e 2 **12.** a) Gas that perfectly obey gas laws at all conditions  $F = 2k_1e$ b) i) When pressure is changed some time is allowed  $e = \underline{F} = \underline{5} = 1$ cm for temperature to adjust to room temperature before 2 x 2 pressure and volume are read  $2\mathbf{k}_1$ 072050247 ii)  $k = slope = \Delta P = (3.0 - 0.6) \times 10^5$ 3.  $A_1V_1 = A_2V_2$  $\Delta^{1}/_{V}$  (3.6 - 0.7) x 10<sup>6</sup>  $\pi r^2 V_1 = \pi R^2 V_2$ = <u>2.4 x 10<sup>5</sup></u>  $6 \ge 3 = 9^2 V_2$  $2.8 \times 10^{-6}$  $V_2 = 6 \times 6 \times 3$  $= 8.571 \times 10^{-2} \text{Nm}$ 9 x 9 iii) Work done in compressing the gas free past papers visit www.freekcsepastpapers.com or call  $= 1.333 \text{ ms}^{-1}$ iv) The gas should be free from dust / particles Unstable 4. c)  $\underline{\mathbf{V}}_{\underline{1}} = \underline{\mathbf{V}}_{\underline{2}}$ When displaced slightly it occupies a new position  $T_1$  $T_2$ which is totally different from the original position  $\frac{4000}{310} = \frac{V_2}{340}$ 5. Clockwise moments = anticlockwise moments  $1.2 \ge 0.5 = (U \ge 0.5) + (1.2 \ge 0.4)$  $V_2 = 4000 + 340$ 0.6 = 0.5U + 0.48310 0.5U = 0.6 - 0.48 = 0.12= 4387.10*l* U = 0.12 = 0.24**13.** i) Work done = mgh 0.5  $= 30 \times 10 \times 10$ = 3000 JU = V ک g  $0.24 = 13.5 \times 10^{-6} \times J \times 10^{-6}$ ii) Work done by force = force x distance = 0.24 = 100 x <u>10</u> 13.5 x 10<sup>-6</sup> x 10 sin 15° = 1777.78kgm<sup>-3</sup> = 3864 Jiii)  $\eta =$ work done on load x 100%  $\Box$ Has no constriction Mercury thread contract and go 6. work done by effort back to bulb before readings are taken = 3000 x 100% 7. Readings of thermometer A is higher than that of 3864 thermometer B = 77.64%Black surfaces are better absorbers of radiant heat iv) Work done to overcome friction 8. Glass expand creating for space thus the fall. Water = 3864 - 3000 expands at a higher rate than glass = 864J v) M.A = L9. E Volume = 300 = 3٦ 100 14. i) CD - uniform deceleration DE - the body is at rest EF - uniform acceleration in the opposite direction ii)  $a = \Delta V - 20 - 0 = 20 = 2m/s^2$ 8  $\Delta t = 10 - 0 = 10$ Tem perature(0\*) curve with 4° being lowest iii) Average velocity = total displacement labelling of axes time taken **10.**  $h_{Hg} \cup H_g g = h_{air} \cup H_g g$  $\frac{1}{2}(25+10)20 + (\frac{1}{2} \times 5 \times -10)$ 40 <u>750 - 748</u> x 13600 =  $h_{air}$  x 1.25 = <u>350 - 25 = 325m</u> = 8.125m/s 1000 40 40  $h_{air} = 0.002 \times 13600$ Page | 351

$$\begin{array}{c} \begin{array}{c} 0 & 1 \\ 0 & 1 \\ 0 & \frac{1}{2} \frac{1}{2} \frac{1}{2} - 0.25 \times 10 = 0 \\ 1 & \frac{1}{2} \frac{1}{2} \frac{1}{2} - 0.25 \times 10 = 0 \\ 1 & \frac{1}{2} \frac{1}{2} \frac{1}{2} - 0.25 \times 10 = 0 \\ 1 & \frac{1}{2} \frac{1}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{2} \frac{1}{2} \\ \end{array}$$

$$V = \int \frac{1}{2} \frac{1}{2$$

232/1,232/2,232/3 physics

correct wavefronts in A 
$$\lambda_1 > \lambda_1$$
  
correct wavefronts in C  
 $\lambda_3 = \lambda_1 > \lambda_2$  and refracted away from the normal  
8.  $C_p = 5 + 2.5$   
 $= 7.5 \mu F$   
 $v = d = 1.4 \times 10^6$   
 $c = 7.5 \times 10^6$   
 $v = 0.1867V$   
9.  
  
each ray incident and reflected  
object position  
10.  $V - f_{\lambda} \Rightarrow f = \frac{v}{1}$   
 $= \frac{3.0 \times 10^6}{7500/100}$   
 $= 4.0 \times 10^6 Hz$   
11.  
 $\frac{234}{92} \cup \longrightarrow \frac{a}{b} \times + 2(\frac{4}{2} \text{ He})$   
 $\frac{254}{92} \cup \longrightarrow \frac{a}{b} \times + 2(\frac{4}{2} \text{ He})$   
 $\frac{254}{92} \cup \longrightarrow \frac{a}{b} \times + \frac{a}{4} \text{ He})$   
 $a + 8 = 234$   $a = 226$   
 $b + 4 = 92$   $b = 88$   
12. - replacing the screen with a photographic film  
- placing a sliding card infront to act as a shutter  
- painting inside black to avoid reflection  
**SECTION B**  
13. a) The magnitude of the induced e.m.f is directly  
proportional to the rate of change of magnetic flux  
linkage  
b) i)  
  
 $v_p = 240v V \frac{1}{15} = 120v$   
 $I_5 = 1400$   
 $800\% = 1400$   
 $100\% = \frac{100 \times 110}{80}$   
 $= 1800W$   
 $1800 = 240 \times I_p$ 

 $1800 = 240 \text{ x I}_{p}$ 

$$I_p = 7.5A$$
i)  $P = I_2R$   
= 7.5<sup>2</sup> x 2  
= 112.5W
c) i) Power = 60 x 3 x 2 x 3 hrs  
1000  
= 1.08kwhr  
i) cost = 1.08 x 6.30 x 7  
= sh.47.628
d) To prevent electric shock
14. a) Capacitance increases  
b) i)  
switch  
 $I_{rec}$  (a) Capacitance increases  
b) i)  
switch  
 $I_{rec}$  (b)  $I_{rec}$  (c)  $I_{rec}$  (

screen iii) C.R.O - deflection system done by electrons held while in the T.V tube deflection is done by the

232/1,232/2,232/3 physics

 $R_{series} = 8 + 10$ magnetic field In a C.R.O there is a single time base while in a = 18Ω T.V tube there are two time bases K.e = eVc) i) 12 = I(18 + 2) $= 1.6 \times 10^{-19} \times 100,000$ I= <u>12</u>  $= 1.6 \text{ x } 10^{-14} \text{J}$ 20 = 0.6Aiii)  $100\% = 1.6 \times 10^{-14}$  $0.5\% = 0.5 \times 1.6 \times 10^{-14}$ c) i) Convex / converging lens 100 If focuses images on a screen or forms a real image  $= 8.0 \text{ x } 10^{-17} \text{J}$ 8.0 x  $10^{-17} = \underline{hc}$ ii) U + V = 100 cm  $\frac{1}{2}$ λ  $\underline{\mathbf{h}}_{\mathrm{I}} = \underline{\mathbf{v}} = 2$  $= 2.486 \times 10^{-9} m$ h₀ u 16. a) Temperature is kept constant physical conditions v = 2u1/2 02479 are kept constant Length of wire is constant u + 2u = 1wu = 100 = 33.33cm Thickness of wire is constant 3 E = I (R + r)b) i) v = 1w - 33.33 $R = 10 + 12 = 22\Omega$ = 66.67 cmd)  $p = \frac{1}{f}$  $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ 12 = I(22 + 2)I = 12 = 0.5A24  $= \frac{1}{22.47 \text{ x} 10^{-2}} \qquad \frac{1}{\text{f}} = \frac{1}{33.33} + \frac{1}{66.67}$ ii)  $R_T = 24 \times 12$ 24 + 12= 4.45D f = 22.47cm = 8Ω

| BURETI SU<br>PHYSICS<br>Paper 3<br>July/August<br>MARKING                                                   | 2016<br>SCHEM                             | NTY JOI<br>E                         | NT EVA                                       | LUATIC        | ON TEST         |      |  |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|----------------------------------------------|---------------|-----------------|------|--|
| <b>1.</b> a) D <sub>1</sub> =                                                                               | = 0.32mm                                  | <b>1</b> <sup>1</sup> / <sub>2</sub> | Ι                                            | $D_2 = 0.321$ | nm <sup>1</sup> | /2   |  |
| b) $D = \frac{0.32 + 0.32}{2} \frac{1}{2}$<br>c) $x = 40$ cm $\frac{1}{6}$                                  |                                           |                                      | $0.32 \times 10^{-3} \text{m}$ $\frac{1}{2}$ |               |                 |      |  |
| d)                                                                                                          | 400111                                    | 72                                   |                                              | y – 00011     | L               | /2   |  |
| L (cm)                                                                                                      | 45                                        | 40                                   | 35                                           | 30            | 25              | 20   |  |
| X (cm)                                                                                                      | 43.2                                      | 49                                   | 51.2                                         | 55            | 58.7            | 63.7 |  |
| Y (cm)                                                                                                      | 56.8                                      | 51                                   | 48.8                                         | 45            | 41.3            | 36.3 |  |
| Y                                                                                                           | 1.31                                      | 1.04                                 | 0.95                                         | 0.82          | 0.70            | 0.57 |  |
| $\frac{y}{x}(2 dp)$                                                                                         |                                           |                                      |                                              | <u>1</u> ]    |                 |      |  |
| e) ii) $= 0.95 - 0.57$<br>35 - 20 = 0.02533<br>iii) $K = 100 \times 0.32 \times 10^{-3}$<br>0.02533 = 1.263 |                                           |                                      |                                              |               |                 |      |  |
| f) outl<br>$d_1 =$<br>$d_2 =$<br>$\underline{d} =$                                                          | ine<br>2.1cm<br>3.6cm<br><u>2.1 + 3.6</u> | -                                    |                                              |               |                 |      |  |
| 2. a) (V)<br>V (b)                                                                                          | $L_{o} = 56ct$                            | m (or any                            | = 2.85<br>other val                          | icm<br>ue)    |                 |      |  |

| S                                                  |  |
|----------------------------------------------------|--|
| 0                                                  |  |
| $\sim$                                             |  |
| $\sim$                                             |  |
| 0                                                  |  |
| _                                                  |  |
| m                                                  |  |
| ö                                                  |  |
| Ē                                                  |  |
| ō                                                  |  |
| _                                                  |  |
| 3                                                  |  |
| ō                                                  |  |
| ŏ                                                  |  |
|                                                    |  |
| 2                                                  |  |
| Ð                                                  |  |
| Ō.                                                 |  |
| σ                                                  |  |
| Q                                                  |  |
| Ľ.                                                 |  |
| ŝ                                                  |  |
| <sup>CO</sup>                                      |  |
| 8                                                  |  |
| w.                                                 |  |
| 8                                                  |  |
| Ň                                                  |  |
|                                                    |  |
| U U                                                |  |
| e<br>B                                             |  |
| free                                               |  |
| /.free                                             |  |
| w.free                                             |  |
| ww.free                                            |  |
| www.free                                           |  |
| www.free                                           |  |
| It www.free                                        |  |
| isit www.free                                      |  |
| visit www.free                                     |  |
| s visit www.free                                   |  |
| rs vis <mark>i</mark> t www.free                   |  |
| ers vis <mark>l</mark> t www.free                  |  |
| pers vis <mark>l</mark> t www.free                 |  |
| apers vis <mark>l</mark> t www.free                |  |
| papers vis <mark>l</mark> t www.free               |  |
| t papers vis <mark>l</mark> t www.free             |  |
| st papers vis <mark>i</mark> t www.free            |  |
| ast papers vis <mark>i</mark> t www.free           |  |
| past papers visit www.free                         |  |
| e past papers vis <mark>i</mark> t www.free        |  |
| ee past papers vis <mark>l</mark> t www.free       |  |
| ree past papers vis <mark>i</mark> t www.free      |  |
| free past papers vis <mark>t www.free</mark>       |  |
| or free past papers vis <mark>i</mark> t www.free  |  |
| for free past papers vis <mark>i</mark> t www.free |  |
| for free past papers vis <mark>t</mark> www.free   |  |

## 232/1,232/2,232/3 physics

| Length L (cm)                                                                   | 10    | 20    | 30    | 40    | 50    |
|---------------------------------------------------------------------------------|-------|-------|-------|-------|-------|
| Extension e (cm)                                                                | 8.8   | 7.7   | 6.6   | 5.6   | 4.5   |
| Time for 20 oscillation (sec)                                                   | 0.088 | 0.077 | 0.066 | 0.056 | 0.045 |
| Periodic time T (sec)                                                           | 12.22 | 11.21 | 1.12  | 9.15  | 8.20  |
| $T^2$ (sec) <sup>2</sup>                                                        | 0.611 | 0.561 | 0.506 | 0.458 | 0.410 |
|                                                                                 | 0.37  | 0.31  | 0.26  | 0.21  | 0.17  |
| labelled axes and unit<br>appropriate scale<br>plotting 4 or 5 correct by trans |       |       |       |       |       |

values 2marks 3 correctly transferred lmark best line lmark lmark vii) Gradient  $\Delta e$  $\Delta T^2$ Slope =  $(86 - 2.5) \times 10^{-2}$  $(3.6 - 0.5) \times 10^{-1}$ =<u>6.1 x 1</u>0<sup>-2</sup>  $3.1 \ge 10^{-1}$  $= 0.1968 \text{m/s}^2$ viii) Gradient =  $\underline{R}$  $4\pi^2$ R = gradient x  $4\pi^2$ 

$$= 0.1968 \times 4 \times 3.142 \times 3.142 = 7.771$$

ii) table b)

| Object                  | Distance X, (cm) |  |
|-------------------------|------------------|--|
| 1                       | 10.1             |  |
| 2                       | 9.9              |  |
| iii) Average value of X |                  |  |

Average value of X  
= 
$$\frac{10.1 + 9.9}{2}$$
 = 10.9cm + 0.1cm

iv) Physical significance of X = 10.0 cm is the focal length of the lens used **GEM SUB-COUNTY FORM 4 JOINT EVALUATION** 

Kenya Certificate of Secondary Education 232/1 PHYSICS

Paper 1 July/August 2016 **Time: 2 Hours** 

1. Figure 1 below shows a top view of two steel needles floating on water surface at a distance x metres apart.

Fig. 1 water P Needle Needle

Very hot water is now poured at point P between the two needles. Explain any change in the distance x. 2. Figures 2a and 2b show a spring when carrying different masses.



Determine :

- the elastic constant of the spring. i)
- the length of the unloaded spring. ii)
- 3. Figure 3 below shows an air balloon and a wooden block at equilibrium on a hot day.

(1 mark)

(2 marks)