BURETI SUB-COUNTY JOINT EVALUATION TEST

PHYSICS

Paper 1

July/August 2016

MARKING SCHEME

SECTION A :

1. $20.3 \mathrm{~cm}^{3}-(0.1 \times 50) \mathrm{cm}^{2}$
20.3-5
$=15.3 \mathrm{~cm}^{3}$
2. $\mathrm{K}_{1}=\underset{\mathrm{e}}{\mathrm{F}}=\underline{\mathbf{5}}=2.5 \mathrm{Ncm}^{-1}$
$\mathrm{F}=2 \mathrm{k}_{1} \mathrm{e}$
$\mathrm{e}=\frac{\mathrm{F}}{2 \mathrm{k}_{1}}=\frac{5}{2 \times 2}=1 \mathrm{~cm}$
3. $\mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}$

$$
\begin{aligned}
& \pi r^{2} V_{1}=\pi R^{2} V_{2} \\
& 6 \times 3=9^{2} V_{2} \\
& V_{2}=\frac{6 \times 6 \times 3}{9 \times 9} \\
& =1.333 \mathrm{~ms}^{-1}
\end{aligned}
$$

4. Unstable

When displaced slightly it occupies a new position which is totally different from the original position
5. Clockwise moments = anticlockwise moments

$$
\begin{aligned}
& 1.2 \times 0.5=(\mathrm{U} \times 0.5)+(1.2 \times 0.4) \\
& 0.6=0.5 \mathrm{U}+0.48 \\
& 0.5 \mathrm{U}=0.6-0.48=0.12 \\
& \quad \mathrm{U}=\underline{0.12}=0.24 \\
& 0.5
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{U}=\mathrm{V} \cup \mathrm{~g} \\
0.24=13.5 \times 10^{-6} \times \mathrm{V} \times 10 \\
\\
= \\
\\
=\frac{0.24}{13.5 \times 10^{-6} \times 10} \\
= \\
1777.78 \mathrm{kgm}^{-3}
\end{array}
\end{aligned}
$$

6. Has no constriction Mercury thread contract and go back to bulb before readings are taken
7. Readings of thermometer A is higher than that of thermometer B
Black surfaces are better absorbers of radiant heat
8. Glass expand creating for space thus the fall. Water expands at a higher rate than glass
9.

curve with 4° being lowest
labelling of axes
10. $\mathrm{h}_{\mathrm{Hg}} \cup \mathrm{Hg}_{\mathrm{H}} \mathrm{g}=\mathrm{h}_{\mathrm{air}} \mathrm{J}_{\mathrm{Hg}} \mathrm{g}$

$$
\begin{gathered}
\frac{750-748}{1000} \times 13600=\mathrm{h}_{\text {air }} \times 1.25 \\
\mathrm{~h}_{\text {air }}=\underline{0.002 \times 13600}
\end{gathered}
$$

$$
\begin{aligned}
& 1.25 \\
& =217.6 \mathrm{~m}
\end{aligned}
$$

11. Transformation of heat to and from other forms of energy

SECTION B

12. a) Gas that perfectly obey gas laws at all conditions b) i) When pressure is changed some time is allowed for temperature to adjust to room temperature before pressure and volume are read
ii) $\begin{aligned} \mathrm{k}=\text { slope }=\frac{\Delta \mathrm{P}}{\frac{\Delta^{1} / \mathrm{V}}{}} & =\frac{(3.0-0.6) \times 10^{5}}{(3.6-0.7) \times 10^{6}} \\ & =\frac{2.4 \times 10^{5}}{2.8 \times 10^{6}} \\ & =8.571 \times 10^{-2} \mathrm{Nm}\end{aligned}$
iii) Work done in compressing the gas
iv) The gas should be free from dust / particles
c) $\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$

$$
\begin{aligned}
& \frac{4000}{310}=\frac{\mathrm{V}_{2}}{340} \\
& \mathrm{~V}_{2}=\frac{4000}{310}+340 \\
& \quad=4387.10 l
\end{aligned}
$$

13. i) Work done $=\mathrm{mgh}$

$$
\begin{aligned}
& =30 \times 10 \times 10 \\
& =3000 \mathrm{~J}
\end{aligned}
$$

ii) Work done by force $=$ force x distance

$$
\begin{aligned}
& =100 \times \frac{10}{\sin 15^{\circ}} \\
& =3864 \mathrm{~J}
\end{aligned}
$$

iii) $\eta=$ work done on load $\times 100 \%$ work done by effort

$$
\begin{aligned}
& =\frac{3000}{3864} \times 100 \% \\
& =77.64 \%
\end{aligned}
$$

iv) Work done to overcome friction

$$
\begin{aligned}
& =3864-3000 \\
& =864 \mathrm{~J}
\end{aligned}
$$

v) $\mathrm{M} \cdot \mathrm{A}=\underline{L}$

$$
=\frac{300}{100}=3
$$

14. i) CD - uniform deceleration

DE - the body is at rest
EF - uniform acceleration in the opposite direction
ii) $\mathrm{a}=\frac{\Delta \mathrm{V}}{\Delta \mathrm{t}}-\frac{20-0=20}{10-0 \quad 10}=2 \mathrm{~m} / \mathrm{s}^{2}$
iii) Average velocity $=$ total displacement time taken

$$
\begin{aligned}
& \frac{1 / 2(25+10) 20+(1 / 2 \times 5 \times-10)}{40} \\
& =\frac{350-25}{40}=\frac{325 \mathrm{~m}}{40}=8.125 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

b) i) $\quad \frac{\mathrm{mv}^{2}}{\mathrm{r}}-\mathrm{mg}=0$

$$
\frac{0.25 \mathrm{~V}^{2}}{1.6}-0.25 \times 10=0
$$

$$
0.15625 \mathrm{~V}^{2}-2.5=0
$$

$$
V=\sqrt{\frac{2.5}{0.15625}}=\sqrt{16}
$$

$$
\mathrm{V}=4 \mathrm{~m} / \mathrm{s}
$$

ii) $\quad V=r w$

$$
4=1.6 w
$$

$$
\mathrm{w}=\frac{4}{1.6}=2.5 \mathrm{rads}^{-1}
$$

iii) $\quad \mathrm{F}=\frac{\mathrm{mv}}{} \mathrm{r}^{2}+\mathrm{mg}$

$$
=\frac{0.25 \times 4^{2}+0.25 \times 10}{16}
$$

$$
=2.5+2.5=5.0 \mathrm{~N}
$$

15. a) The ball has the same horizontal velocity as the truck
b) Impulse is the change in momentum
c) i) $\mathrm{M}_{1} \mathrm{~V}_{1}+\mathrm{M}_{2} \mathrm{~V}_{2}=\left(\mathrm{M}_{1}+\mathrm{M}_{2}\right) \mathrm{V}$

$$
\begin{gathered}
30,000 \times 20+0=(30,000+10,000) \mathrm{V} \\
\mathrm{~V}=\underline{600000}=15 \mathrm{~ms}^{-1}
\end{gathered}
$$

ii) $\mathrm{S}=\mathrm{Vt}$

$$
=15 \times 15=225 \mathrm{~m}
$$

iii) $\mathrm{Ft}=\mathrm{m}(\mathrm{v}-\mathrm{u})$
$\mathrm{f}=\frac{\mathrm{m}(\mathrm{v}-\mathrm{u})}{\mathrm{t}}$

$$
\begin{aligned}
& =\frac{30000(15-20)}{0.5} \\
& =-300,000 \mathrm{~N}
\end{aligned}
$$

d) This is due to the passengers reaction force on the boat which acts backwards
16.

where u-upthrust
mg - weight
T-tension
ii) $\mathrm{T}+\mathrm{mg}=\mathrm{U}$

$$
\begin{aligned}
\mathrm{T}+10 \times 10 & =3 / 4 \times 0.04 \times 1040 \times 10 \\
\mathrm{~T} & =312 \mathrm{~N}-100 \\
\mathrm{~T} & =212 \mathrm{~N}
\end{aligned}
$$

c) i)Law of floatation - a floating object displaces 9 ts own weight of fluid in which it floats ii) Weighted bulb - to make the hydrometer float upright and narrow to increase its sensitivity

BURETI SUB-COUNTY JOINT EVALUATION TEST

PHYSICS

Paper 2
July/August 2016
MARKING SCHEME
SECTION A
1.

Using ampere's swimming rule, the N -pole is deflected to the right
2. - sound waves require a material medium to travel while microwaves do not require a material medium to travel / for transmission

- sound waves travel with slower speeds while microwaves travel with the speed of light (3.0 x $10^{8} \mathrm{~m} / \mathrm{s}$)
- sound waves are longitudinal waves while microwaves are transverse in nature

3. Initially the rod attracts electrons / negative charges from the leaf to the cap, so the leaf falls. As the rod gets closer to the cap, more electrons are attracted to the cap so the leaf and the plate become positively charged hence deflection
4. A - North pole

B - South pole

11 mk (tied)
5. $30 \mathrm{Ah} \rightarrow 1 \mathrm{~h}=30 \mathrm{~A}$
$10 \mathrm{~min}=\underline{10} \times 30$
60
$=5 \mathrm{~A}$
6. $\mathrm{n}=$ real depth
apparent depth
$1.33=\quad \underline{2.4}$
apparent depth
apparent depth $=\underline{2.4}=1.805 \mathrm{~cm}$
7.

correct wavefronts in $\mathrm{A} \lambda_{1}>\lambda_{1}$
correct wavefronts in C
$\lambda_{3}=\lambda_{1}>\lambda_{2}$ and refracted away from the normal
8. $C_{p}=5+2.5$
$=7.5 \mu \mathrm{~F}$
$\mathrm{v}=\underset{\mathrm{c}}{\mathrm{d}}=\frac{1.4 \times 10^{6}}{7.5 \times 10^{-6}}$
$\mathrm{v}=0.1867 \mathrm{~V}$
9.

each ray incident and reflected object position
10. $\quad V-f / \Rightarrow f=\frac{v}{1}$

$$
\begin{aligned}
& =\frac{3.0 \times 10^{8}}{7500 / 100} \\
& =4.0 \times 10^{6} \mathrm{~Hz}
\end{aligned}
$$

11.

$$
\begin{aligned}
& { }_{22}^{254} \mathrm{U} \longrightarrow{ }_{0}^{a} X+2\left({ }_{2}^{4} \mathrm{He}\right) \\
& \left.{ }_{32}^{234} \mathrm{U} \longrightarrow{ }_{0}^{a} \mathrm{X}+{ }_{4}^{a} \mathrm{He}\right) \\
& \begin{array}{ll}
a+8=234 & a=226 \\
b+4=92 & b=88
\end{array}
\end{aligned}
$$

12. - replacing the screen with a photographic film - placing a sliding card infront to act as a shutter - painting inside black to avoid reflection

SECTION B

13. a) The magnitude of the induced e.m.f is directly proportional to the rate of change of magnetic flux linkage
b) i)

secondary power $=120 \times 12$

$$
\begin{aligned}
& =1440 \text { watts } \\
& 80 \%=1440 \\
& 100 \%=\frac{100 \times 1440}{80} \\
& =1800 \mathrm{~W}
\end{aligned}
$$

$1800=240 \mathrm{xI}_{\mathrm{p}}$

$$
\mathrm{I}_{\mathrm{p}}=7.5 \mathrm{~A}
$$

ii) $\mathrm{P}=\mathrm{I}_{2} \mathrm{R}$

$$
\begin{aligned}
& =7.5^{2} \times 2 \\
& =112.5 \mathrm{~W}
\end{aligned}
$$

c) i) Power $=\frac{60 \times 3 \times 2}{1000} \times 3 \mathrm{hrs}$

$$
=1.08 \mathrm{kwhr}
$$

ii) cost $=1.08 \times 6.30 \times 7$
$=$ sh. 47.628
d) To prevent electric shock
14. a) Capacitance increases
b) i)

ii) Negative charges flow from the negative terminal of the battery to one plate of the capacitor

Negative charges flow from the other plate of the capacitor to the positive terminal of the cell Hence equal positive and negative charges gather on the plates opposing further flow of electrons when fully charged or p.d across the plates is equal to that of the battery
iii) To slow down the charging process so that curreht and voltage are observed
c) i) The leaf falls

When U.V falls on the zinc plate electrons are ejected / photoelectiric effect takes place

The negative charges in the zinc plate and capof the electroscope are repelled hence leaf falls
ii) There is no effect on the leaf of the electroscope $>$ The electrons liberated by the UV light are attracted back by the positive charges on the zinc plate / cap of electroscope hence no effect on leaf divergence
15. a) X-rays are produced when fast moving electrons hit a metal target (or excited electrons lose energy in form of X-rays)

Cathode rays are produced when a metal is heated (by thermionic emission)
b) i) - cathode should be connected to then negative terminal of a.c supply

- grid should be connected to the negative terminal
- the anode plates should be connected to the positive terminal
- Y-plates should arranged to come before the Xplates
ii) By making the grid less negative w.v.t to the cathode
iii) To conduct away electrons / cathode rays on hitting the screen / reduce the accumulation of electrons on the screen
iii) C.R.O - deflection system done by electrons held while in the T.V tube deflection is done by the
magnetic field
In a C.R.O there is a single time base while in a T. V tube there are two time bases
c) i)

$$
\begin{aligned}
\mathrm{K} . \mathrm{e} & =\mathrm{eV} \\
& =1.6 \times 10^{-19} \times 100,000 \\
& =1.6 \times 10^{-14} \mathrm{~J}
\end{aligned}
$$

iii) $100 \%=1.6 \times 10^{-14}$

$$
\begin{aligned}
& \begin{aligned}
0.5 \% & =\frac{0.5 \times 1.6 \times 10^{-14}}{100} \\
& =8.0 \times 10^{-17} \mathrm{~J} \\
8.0 \times 10^{-17} & =\frac{\mathrm{hc}}{\lambda} \\
& =2.486 \times 10^{-9} \mathrm{~m}
\end{aligned}
\end{aligned}
$$

16. a) Temperature is kept constant physical conditions are kept constant

Length of wire is constant
Thickness of wire is constant
b) i)

$$
\begin{aligned}
\mathrm{E} & =\mathrm{I}(\mathrm{R}+\mathrm{r}) \\
\mathrm{R} & =10+12=22 \Omega \\
12 & =\mathrm{I}(22+2) \\
\mathrm{I} & =\frac{12}{24}=0.5 \mathrm{~A}
\end{aligned}
$$

ii) $\mathrm{R}_{\mathrm{T}}=\frac{24 \times 12}{24+12}$

$$
=8 \Omega
$$

$$
\begin{gathered}
\mathrm{R}_{\text {series }}=8+10 \\
=18 \Omega \\
12=\mathrm{I}(18+2) \\
\mathrm{I}=\frac{12}{20} \\
=0.6 \mathrm{~A}
\end{gathered}
$$

c) i) Convex / converging lens

If focuses images on a screen or forms a real image
ii) $\mathrm{U}+\mathrm{V}=100 \mathrm{~cm} \quad 1 / 2$

$$
\begin{aligned}
& \underline{h}_{\underline{\underline{I}}}=\underline{v}=2 \\
& h_{0} u \\
& \mathrm{v}=2 \mathrm{u} \quad 1 / 2 \\
& u+2 u=1 w \\
& \mathrm{u}=\frac{100}{3}=33.33 \mathrm{~cm} \\
& \mathbf{v}=1 \mathrm{w}-33.33 \\
& =66.67 \mathrm{~cm}
\end{aligned}
$$

d) $\mathrm{p}=\frac{\mathrm{l}}{\mathrm{f}} \quad \frac{\mathrm{l}}{\mathrm{f}}=\frac{1}{\mathrm{u}}+\underset{\mathrm{v}}{\mathrm{l}}$

$$
\begin{array}{ll}
=\frac{1}{22.47 \times 10^{-2}} & \frac{1}{\mathrm{f}}=\frac{1}{33.33}+\frac{1}{66.67} \\
=4.45 \mathrm{D} & \mathrm{f}=22.47 \mathrm{~cm}
\end{array}
$$

BURETI SUB-COUNTY JOINT EVALUATION TEST

PHYSICS
Paper 3

July/August 2016

MARKING SCHEME

1. a) $\quad \mathrm{D}_{1}=0.32 \mathrm{~mm} \quad 1 / 2$
$\mathrm{D}_{2}=0.32 \mathrm{~mm} \quad 1 / 2$
b) $\mathrm{D}=\frac{0.32+0.32}{2} \quad 1 / 2$
c) $\mathrm{x}=40 \mathrm{~cm} \quad 1 / 2 \quad y=60 \mathrm{~cm} \quad 1 / 2$
d)

$\mathrm{L}(\mathrm{cm})$	45	40	35	30	25	20
$\mathrm{X}(\mathrm{cm})$	43.2	49	51.2	55	58.7	63.7
$\mathrm{Y}(\mathrm{cm})$	56.8	51	48.8	45	41.3	36.3
Y	1.31	1.04	0.95	0.82	0.70	0.57
$\frac{\mathrm{Y}}{\mathrm{X}}(2 \mathrm{dm})$						

e) ii) $=\frac{0.95-0.57}{35-20}=0.02533$
iii) $\mathrm{K}=\frac{100 \times 0.32 \times 10^{-3}}{0.02533}=1.263$
f) outline
$\mathrm{d}_{1}=2.1 \mathrm{~cm}$
$\mathrm{d}_{2}=3.6 \mathrm{~cm}$
$\frac{\mathrm{d}=2.1+3.6}{2}$

$$
=2.85 \mathrm{~cm}
$$

2. a) (V) $L_{o}=56 \mathrm{~cm}$ (or any other value)

V (b)

Length L (cm)	10	20	30	40	50
Extension e (cm)	8.8	7.7	6.6	5.6	4.5
Time for 20 oscillation (sec)	0.088	0.077	0.066	0.056	0.045
Periodic time T (sec)	12.22	11.21	1.12	9.15	8.20
$\mathrm{~T}^{2}(\mathrm{sec})^{2}$	0.611	0.561	0.506	0.458	0.410
	0.37	0.31	0.26	0.21	0.17

viii) Gradient $=\frac{\mathrm{R}}{4 \pi^{2}}$

$$
\begin{aligned}
\mathrm{R} & =\text { gradient } \times 4 \pi^{2} \\
& =0.1968 \times 4 \times 3.142 \times 3.142=7.771
\end{aligned}
$$

b) ii) table

Object	Distance X, (cm)
1	10.1
2	9.9

iii) Average value of X
$=\frac{10.1+9.9}{2}=10.9 \mathrm{~cm} \pm 0.1 \mathrm{~cm}$
iv) Physical significance of $\mathrm{X}=10.0 \mathrm{~cm}$ is the focal length of the lens used

GEM SUB-COUNTY FORM 4 JOINT EVALUATION
 Kenya Certificate of Secondary Education
 232/1
 PHYSICS
 Paper 1
 July/August 2016

Time: 2 Hours

1. Figure 1 below shows a top view of two steel needles floating on water surface at a distance x metres apart.

Fig. 1

Very hot water is now poured at point P between the two needles. Explain any change in the distance x .

Determine :

i) the elastic constant of the spring.
ii) the length of the unloaded spring.
3. Figure 3 below shows an air balloon and a wooden block at equilibrium on a hot day.

