GEM SUB-COUNTY JOINT EVALUATION EXAMS 2016

Paper - 233/3

CHEMISTRY PRACTICAL

PAPER 3

- You are provided with
 - 2.0M sodium hydroxide solution labelled solution B
 - Solution C containing 12.25 g per litre of an mineral acid C

You are required to

- Prepare a dilute solution of sodium hydroxide, solution B. i)
- Determine the

Relative Formular mass of the acid C

Molar Enthalpy change of reaction between acid C and sodium hydroxide solution B.

Procedure 1. Using a pipette and a pipette filler place 25 distilled water. Shake well. Add more distilled water with solution C. Using a clear flask. Add two drops of phenolphthalein intitration two more times and complete the terms.	led water to make upto the pipette and a pipette filler dicator and titrate with solu	mark. Label this solution, place 25.0cm ³ of solutio	n D into a 250ml conical
	1	2	3
Final burette reading (cm³)			5
Initial burette reading (cm³)			
Volume of solution C used (cm³)			
Calculate the i) average volume of solution C used. ii) moles of solution D used. iii) Concentration in moles per litre of acid D used. vi) Relative formula mass (RFM) of solution Procedure II.		e number of moles of aci	(1 mark) (2 marks) d C used are half the moles of (2 marks) (1 mark)

- vi) Relative formula mass (RFM) of solution C.

- Procedure II. b)
 - Using a clean burette, place 5.0cm³ of solution C into each of six (6) test-tubes.
 - Using a 100ml measuring cylinder, place 20cm³ of solution D, sodium hydroxide solution in a 100ml plastic beaker. Measure the temperature of solution D and record it in table 2 below.
 - iii) To solution D in the beaker, add acid C, solution C from one of the test-tubes. Stir the mixture with the thermometer and record in Table 2, the maximum temperature reached. Continue with step (iv) IMMEDIATELY
 - iv) Add the acid C, solution C from another test-tube to the mixture obtained in (iii) above, stir and record the maximum temperature reached in Table 2. Continue adding the acid C, solution C from each of the other four test-tubes, stirring the mixture and recording the maximum temperature each time and complete Table 2.

TABLE 2

Volume of solution C	0	5	10	15	20	25	30
acid C added (cm³)							
Maximum temperature (°C)							

- On the grid provided, plot a graph of temperature (vertical axis) against volume of acid C solution C added. (3 marks)
- Using the graph
 - determine the volume of solution C which gave the maximum change in temperature.
- (1 mark) (1 mark)

- ii) determine the temperature change, DT, for the reaction.
- Using your answer in parts d(i) and d(ii), calculate the molar enthalpy change of the neutralisation reaction between acid C and sodium hydroxide solution.

(Heat capacity = $4.2 \text{J g}^{-1} \text{ k}^{-1}$; density of the mixture = 1.0gcm^{-3})

(3 marks)

- You are provided with substance P. Carry out the tests below and write your observations and inferences in the spaces provided.
- Describe the appearance of substance P.

(1 mark)

- Place about one third of substance P in a dry test-tube and heat it strongly.
- Place the remaining amount of substance P in a boiling tube. Add about 10cm³ of distilled water and shake well. Retain the

Chemistry	paper	1, 2	&:
-----------	-------	------	----

mixture for tests in (d) below.

- d) i) To 2cm³ portion of the mixture obtained in (c) above:
 Add two to three drops of aqueous lead (II) nitrate to the mixture.
 - ii) To the mixture obtained in d(i) above add five drops of dilute nitric V acid.
- e) To 2cm³ portion of mixture obtained in (c), add aqueous barium chloride dropwise until in excess.
- 3. You are provided with an organic liquid P. Carry out the following tests and record you observations and inferences in the space provided.
- a) Place about 4cm³ of liquid P in a boiling tube. Add to it 10cm³ of distilled water and shake well. Label this solution G.
- b) Place 2cm³ of solution G in a test-tube. Add to it solid sodium hydrogen carbonate provided.
- c) To a second 2cm³ portion of solution G in a test-tube, add 2 to 3 drops of acidified potassium dichromate (VI) and warm.

CONFIDENTIAL INSTRUCTIONS

Each candidate should be provided with the following:

- 4 beakers of 250ml
- 4 pieces of visking tubing measuring 10cm each
- 4 pieces of threads measuring 0.5m each

means of timing

concentrated solution of sodium chloride labelled solution B (200ml)

distilled water labelled solution A (500ml)

- 0.1% sucrose solution labelled solution C (20ml)
- 4 labels