GUCHA SOUTH EVALUATION TEST (GSET) 2016
Kenya Certificate of Secondary Education (K.C.S.E)
232/1
PHYSICS
PAPER 1 (THEORY)
1.The figure 1 below shows a micrometer screw gauge that has a zero error of +0.02 . State the actual reading of the micrometer screw gauge.

Fig 1
2. In the figure 2, below, U-tube contains two immiscible liquids P and Q. If the density of Q is $900 \mathrm{~kg} / \mathrm{m}^{3}$ and that of P is 1200 kg $/ \mathrm{m}^{3}$, Calculate the height of liquid Q .

Fig 2
(1 mark)
3. Distinguish between latent heat of fusion and specific latent heat of fusion of a substance.
4. A mass of 8 kg is whirled round in a horizontal circle using a rope that is 80 cm long, it is takes $21 / 2$ circles in 1 second, calculate
the tension the rope experiences.
3 marks)
5. Fig 3 shows a solid cylinder standing on a horizontal surface. The cylinder is in stable equilibrium.

Fig 3
On the horizontal space provided, sketch the cylinder in neutral equilibrium
6. In terms of intermolecular forces, explain the difference between liquid and gaseous state.
7. (a)Under what conditions can a feather and a stone released from the same height land on the ground at the same time?
(b) On the axis on figure 4 below, sketch displacement time graph for accelerating body.

A spring extends by 4 cm when a load of 10 N is suspended from it. Six similar springs are used in the system shown in figire
5. Determine the total extension.
(3 marks)

Fig 5
9. Explain how heat loss by radiation is minimized in a vacuum flask.
10. A pipe of radius 2 mm is connected to another pipe of radius 6 mm . If water flows in the narrow pipe at a speed of $3 \mathrm{~m} / \mathrm{s}$, determine the speed of water in the wider pipe.

Fig 6 shows the features of a dry cell (leclanche). Using the information in the figure to answer questions 11 and 12 .

Fig 6
11. State the polarities of the parts labelled A and B.
12. Name the chemical substances in the parts labelled C and D.
13. The light uniform bar in figure 7 is in equilibrium. The two beakers A and B contain water at the same temperature. The blocks are made of the same material.

Fig 7
If the temperature of the water in beaker A is now raised, explain why the beam tips to side A. Assume the solid does not expand.
(2 marks)
14. A stone thrown vertically upwards from the base of a mountain with an initial velocity of $100 \mathrm{~m} / \mathrm{s}$. The stone just stopped ${ }^{\text {ass }}$ the apex and came back. Another boy projected a stone horizontally from the top of the mountain. Calculate:
(a) Height of the mountain.
(b) Time taken for the stone to follow the trajectory.
(2 marks)
(c) The range if the horizontal velocity is $20 \mathrm{~m} / \mathrm{s}$.
(2 marks)
(d) Calculate the impulse of force produced when a table is pulled for 3 seconds by a constant force of 10 N towards the right and then for 2 seconds by a constant force of 20 N towards the left
(2 marks)
(e)The figure 8 below shows a tape from a trolley accelerating at $5 \mathrm{~m} / \mathrm{s}$ and the timer is vibrating at 100 HZ .

(2 marls
(2 marks)
iameter 0
(ii) Change in velocity from A to B
(2 marks) (i) The mechanical advantage.
(ii) The velocity ratio.
(2 marks)
(iii) The efficiency of the machine.
(b) (i) A loudspeaker is a transducer. Explain.

Calculate the total power in lifting 0.2 kg of metal cane containing $2000 \mathrm{~cm}^{3}$ of ice onto a lorry as shown below within 4 S .
Density of ice is $0.9 \mathrm{~g} / \mathrm{cm}^{3}$

16. (a) What is meant by term specific latent heat of vaporization?
(b) In an experiment to determine the specific latent heat of vapourisation of water, steam at $100^{\circ} \mathrm{C}$ was passed into water contained in a well lagged copper calorimeter. The following measurements were made :-
Mass of calorimeter $=50 \mathrm{~g}$
Initial mass of water 70 g
Initial temperature of water $=5^{\circ} \mathrm{C}$
Final mass of water + Calorimeter + condensed steam $=123 \mathrm{~g}$
Final temperature of mixture $=30^{\circ} \mathrm{C}$

Specific heat capacity of water $=4200 \mathrm{jKg}^{-1} \mathrm{k}^{-1}$
Specific heat capacity of copper $=392 \mathrm{jKg}^{-1} \mathrm{k}^{-1}$
I. Determine the:-
(i) Mass of condensed steam. (1 mark)
(ii) Heat gained by water and calorimeter.
II. Given that L is the specific latent heat of vaporization of steam
(i) Write an expression for the heat given out by steam.
(ii) Determine the value of L
III. The specific latent heat of fusion of ice is $334 \mathrm{~J} / \mathrm{g}$. Explain what this means.
IV. The specific heat capacity of pure water is $4200 \mathrm{j} / \mathrm{kg} / \mathrm{k}$ while that of sea water is $3900 \mathrm{~J} / \mathrm{kg} / \mathrm{k}$. Which of the two

17. (a) State the law of floatation
(b) The figure 10 below represents a sphere $0.012 \mathrm{~m}^{3}$ volume and mass 5 kg floating between two liquids A and B such that $2 / 3$ of its volume is in liquid A. Density of liquid B is $800 \mathrm{~kg} / \mathrm{m}^{3}$
(Take $\mathrm{g}=10 \mathrm{~N} / \mathrm{kg}$)

Fig 10
Determine
(i) Weight of liquid B displacement
(ii) Weight of liquid A displaced
d) Explain why a hydrometer has the following:
(i) Lead shots in the bulb.
18. (a) State Newton's second law of motion.
(1 madk)
(b) A wooden block resting on a horizontal bench is given an initial velocity, U, so that it slides on the bench surface for a distance, d , before conung to stop. The values of d were measured and recorded for various values of initial velocity. Figure 11 shows the graph U^{2} against d.

(i) Calculate the slope S of the graph. (3 marks)
(ii) Given that $\mathrm{U}^{2}=20 \mathrm{kd}$, where k is a constant for the bench surface, determine the value of k from the graph. (2 marks)
(iii) State how the value of K would be affected by a change in the roughness of the bench surface. (1 mark)
(c)A care of mass 800 kg starts and accelerates at $1.2 \mathrm{~ms}^{-2}$. Determine its momentum after it has moved 400 m from the starting point.

