Name	Admission No/
School	Candidate's Signature
232/1	Date
PHYSICS	
PAPER 1	
(THEORY)	
JULY/AUGUST 2016	

KIGUMO SUB-COUNTY CLUSTER EXAMINATION 2016

KENYA NATIONAL NATIONAL EXAMINATION COUNCIL

Instructions to candidates

- a) Write your Name, School and Admission Number in the spaces provided above.
- b) Sign and write the date of examination in the spaces provided above.
- c) This paper consists of **two** sections: A and B.
- d) Answer ALL the questions in section A and B in the spaces provided.
- e) All working must be clearly shown.

TIME: 2 HOURS

- f) Non programmable silent electronic calculators may be used.
- g) This paper consists of 12 printed pages.
 - Where necessary take g = 10N/Kg, density of water = $1g/cm^3$

For Examiner's use only

Section	Question	Maximum Score	Candidate's Score
I	1 - 13	25	
	14	11	
	15	12	
II	16	09	
	17	12	
	18	11	
	Total Score	80	
	l		

OUESTION 1

- 1. You are provided with the following
 - One stand, two bosses, two clamps
 - Two pieces of thread
 - A stopwatch
 - One metre rule
 - Two identical springs
 - Six 100g masses
 - One optical pin
 - a piece of cellotape
 - a) Tie the two springs together side by side and set up the apparatus as shown.

- (i) Hang the springs from rod (of one clamp) as shown in the figure
- (ii) Tie together the upper end and the lower ends of the springs with pieces of thread as shown in the figure.
- (iii) Hang a 100g mass from the lower ends of the springs so that the mass is supported by both springs.
- (iv) Clamp the metre rule vertically.
- (v) Use cellotape to fix the optical join on the top of the 100g mass so that it acts as a pointer.
- (vi) Adjust the rule so that the pointer is directly along a particular scale mark of the rule. Record this mark in the table.
- b) i) Add a 100g mass to the first mass. Record the new position of the pointer and the extension, e, in the table.
 - ii) Add another 100g mass and record the new position of the pointer and the extension in the table.
 - (iii) Repeat b (ii) until the total mass supported by the spring is 600g.
- c(i) Re move the rule, displace the 600g mass slightly downwards and release it to oscillate vertically.
 - ii) Time 20 oscillations. Record in the table the time t_1 for 20 oscillations. Repeat to obtain the time t_2 .
 - Calculate and record the average time and the periodic time T.
- (iii) Repeat c(i) and (ii) for 500g, 400g, 300g and 200g masses.
- (iv) Find T² and complete the table.

Mass (g)	100	200	300	400	500	600
Position of pointer (cm)						
Extension (e)cm						
Time for 20 t_1						
Oscillations (s) t ₂						
Average time, t(s)						
Periodic time T(s)						
$T^{2}(S^{2})$						

(9 mks)

d) i) Plot a graph of T² against extension e

(5mks)

ii) Determine the gradient of the graph and state its units.

(3mks)

iii) The equation of the graph is given by

$$T^2 = \frac{4\pi^2 e}{b} + c$$

where b and c are constants. Determine the value of b.

(3mks)

```
, | | | | | |
      ++1,111111111
1-1,14+++1
1-1,14+++1
         ļ ļ.
     !---
                    ##
. 1
                <del>┖╏┋┇┋</del>
<del>╻╏┋╏┋┇</del>
             Ţ | <del>Ţ</del> | <del>Ţ</del> |
             •
    7 4
               --|-<del>---|-</del>
                    [ - ]
                +++++++
                       廿
٠,
                4-: I
            +++++++
              ij
                   <u>:</u>
             .1.
                       П
                     ++-|-|-
                     ٠ij
       Πſ
                       7.
                    -----
              Ŧ
                     T:
```

Question 2

You are provided with the following

- A triangular prism of 600.
- Four optical pins
- A soft board
- A plain piece of paper

Proceed as follows

- (a) Place the plain sheet of paper on the soft board
- (b) Place the prism with one face on the plain paper and trace its outline.
- (c) Remove the prism from the plain sheet of paper.

(d) Mark angle A and record its value.

 $A = \dots (1mk)$

- (e) Draw a normal as shown and draw a ray of incident on the normal at an angle of incidence of 30°.
- (f) Replace the prism on the outline on the sheet.
- (g) Stick two pins P₁ and P₂ along the path of the incident ray as shown in the diagram.
- (h) View the images of P_1 and P_2 through the glass prism through face AC as shown on the diagram.
- (i) Stick two pins P_3 and P_4 so that they appear to be in line with P_1 and P_2 as seen through the glass prism.
- (j) Remove the pins and prism from the sheet. Trace the path of the ray until it emerges from the glass as shown in the diagram.
- (k) Extend the incident ray and the emergent ray until they meet at P. Measure and record the angle of deviation d.
- (l) Repeat the experiment for other angles of incidence shown in the table.

Angle of incidence (i) ⁰	30	35	40	45	50	55	60
Angle of deviation (d) ⁰							

(8 marks)

- (m) Plot a graph of angle of deviation (d)⁰ against angle of incidence (i)⁰. (5 marks)
- (n) From the graph determine the minimum angle of deviation D.

(2 marks)

(p) Find the refractive index of the prism material using (4 marks)

$$n = \frac{\sin \frac{(A+D)}{2}}{\sin \frac{(A+D)}{2}}$$

