NAME:	INDEX NO:	• • • • • • • • • • • • • • • • • • • •
SCHOOL:	SIGNATURE :	•••••
DATE:	•••••	
233/2		
Chemistry		
Theory		
July/August		

KAKAMEGA SOUTH SUB- COUNTY JOINT EVALUATION TEST - 2016

Kenya Certificate of Secondary Examination (KCSE)

233/2

Chemistry

Theory

INSTRUCTIONS TO CANDIDATES

- 1. Write your name and index number in the spaces provided above.
- 2. Sign and write the date of examination in the spaces provided above.
- 3. Answer all the questions in the spaces provided in the questions paper.
- 4. Mathematical tables and silent electronic calculators may be used.
- 5. All working must be shown where necessary.

QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
	80	

This paper consists of 10 printed pages Check the Question paper to ensure that all pages are printed as indicated and no question are missing.

Time: 2 Hours

1. The figure below is used to investigate the effect of carbon (II) Oxide on copper (II) Oxide. Study it and answer the questions that follow.

a) Write a chemical equation of the reaction for the preparation of carbon (II) oxide in the laboratory. (1mk)

b)	What precaution should be taken when preparing carbon (II) Oxide?	(2mks)
c)	State the observations made in apparatus A and B at the end of the experiment?	(2mks)
	A	
	В	
d)	Write the chemical equation for the reaction in apparatus A.	(1mk)
e)	State the reducing agent in (d) above.	(1mk)

				••••
g)		e in air forming a Gas P.		
	(i) Name the gas	P		(11
	ii) State two appli	ications of the gas P		(21
	• • • • • • • • • • • • • • • • • • • •	•••••		• • • • •
The	table below shows s	some information concerning eleme	nts S, T,V, U and W,. The le	etter
	table below shows s	ome information concerning eleme	nts S, T,V, U and W,. The le	etters
			nts S, T,V, U and W,. The le	etters
	he actual symbols of	the elements.		etters
not tl	he actual symbols of	Formula of Oxide	Period	etters
not the	he actual symbols of	Figure 1. Formula of Oxide S_20	Period 2	etters
not the	he actual symbols of	Figure 1. Formula of Oxide S_20 T_2O_3	Period 2 3	etter
S T U	he actual symbols of	Fithe elements. Formula of Oxide S_20 T_2O_3 UO_2 or UO_3	Period 2 3 3	etters
not tl	he actual symbols of	Formula of Oxide	Period	ette
S T U	he actual symbols of	Fithe elements. Formula of Oxide S_20 T_2O_3 UO_2 or UO_3	Period 2 3 3	etter

The formula of the ion formed by element T.

ii)

(1mk)

Two of the oxides, S ₂ O and UO ₃ were separately dissolved in distilled water. Compare the			
PH values of resulting solutions.		(2mks)	
	ing.		
The reactivity of S with that of W.		(3mks)	
The electrical conductivity of element	I with that of magnesium.	(2mks)	
The meeting point of element v with tr	nat of element x which is just belo		
		(2mks)	
	•••••		
		(1mk)	
•		, ,	
	-	or name reactions	
$Fe^{2+}_{(aq)} + 2e^{-} \longrightarrow Fe_{(s)}$			
	-0 44		
	-0.44 + 0.54		
$I_{2(s)} + 2e$	-0.44 + 0.54 + 0.77		
	PH values of resulting solutions. Compare with explanations, the follow. The reactivity of S with that of W. The electrical conductivity of element The meeting point of element V with the solution of the standard that the stan	PH values of resulting solutions. Compare with explanations, the following. The reactivity of S with that of W. The electrical conductivity of element T with that of magnesium. The meeting point of element V with that of element x which is just belo Identify element V. The following table gives the standard electrode potential for a number of	

i) Write a cell equation for the reaction that would give the highest emf.

(2mks)

3.

	ii)	The strongest reducing agent. Give reason.	(2mk)
	iii)	Which substances in the table could be used to convert iodid	
	iv)	Write an equation for the reaction you would expect to occur	r when an iron nail is
		placed in a solution of iron (II) sulphate.	(1mk)
b)	In tl	he production of aluminum for aluminum oxide, 100 A was pas	sed for 5 hours. How
,		h aluminum was obtained? (1F = 96500C,Al = 27)	(2mks)
`		1 1 1 6	
c)		h an example ,define	
i)	Prin	mary cell	(2mks)
	•••••		• • • • • • • • • • • • • • • • • • • •
	••••		
ii)	Seco	ondary cell	(2mks)
			• • • • • • • • • • • • • • • • • • • •

4. Study the reaction scheme below and answer the questions that follow.

a)	Name	
i)	Gas P	
ii)	Gas Q	
iii)	Substance J	•••••
b)	Write the structural formula of T	(1mk)
c)	State the characteristics property of substance N	(1mk)
d)	Name process Y	
e)	Name the type of reaction represented as Z.	(1mk)
f)	Name the reagent and condition for reaction	•••••
i)	V	(2mks)
ii)	U	(2mks)
/		(=====,
iii)	W	(2mks)
g)	Name Process R	
_		(1mk)

5. a) The flow chart below shows the industrial manufacture of nitric (v) acid. Study it and answer the questions that follow:

i)	Identify substances B and C	(2mk)
	B	
ii)	Write an equation for the reaction that occurs in the catalytic chamber.	(1mk)
(iii)	Using an equation or otherwise. Explain the reaction that takes place in the al	bsorber.(1mk)
(iv)	Explain why nitric (v) acid is stored in brown bottles.	(1mk)
· · (v)	Explain what happens when drops of concentrated nitric (v) acid are put on d	
•	sawdust.	(2mks)
(vi).	Give one industrial use of nitric (vi) acid.	(1mk)
	rine and ammonia gas react producing products depending on the reagent in excitions for the reactions when:-	ess. Write the
i)	Chlorine is in excess	(1mk)
ii)	Ammonia is excess.	(1mk)

b)

6. Study the flow diagram below on extraction of copper and answer the questions that follow.

a)	Name	the copper ore used for the extraction of copper.	(1mk)
b)	The ar	nount of copper in the copper ore is small state the method used to separate	te the impurities
	from the	ne ore in chamber A.	
c)	i)	Which substances is fed into the roaster from chamber A?	(1mk)
	ii)	Write an equation for the reaction that takes place in the roaster.	(1mk)
	d)	Name B and state it's function.	(2mks)
	e)	Why is blister copper not fit for making electrical conductors?	(1mk)
	g)	When copper is reacted with concentrated nitric (v) acid & blue solution	is formed.
	i)	Name the blue solution.	(1mk)

	ii)	Name and write the formula of the substance formed when the blue solution reacts w	
		excess aqueous ammonia. (2r	nks)
7.	The	e solubility in grammes of sodium nitrate in 100g of water are given for various temperatu	ures
	in ⁰ c.	2.	
Ten	np (⁰ C)	10 20 30 40 50 60 70 80 90	100
		73 80 88 96 104 114 124 148 162 in g/100g of H ₂ O	180
a)	i)	Plot the solubility curve for sodium Nitrate.(Temperature on x-axis) (3)	mks)
	::)	Determine the terminature of which the colubility of the colt is 150c/100c of water (1	
	ii)	Determine the temperature at which the solubility of the salt is 150g/100g of water.(1	mk)
b)	Give	en $100g$ of a saturated solution of sodium Nitrate at 10^{0} C, Determine the mass of .	•••••
	i) S	Solute in the solution	
	ii)	Solvent in the solution. (1r	nk)
			•••••
	iii)	Salt that will be dissolved by the amount of solvent in (b) above at 12^{0} C. (1r.	nk)
	iv)	Salt which must be added to the solution to form a saturated solution at 80° C? (1r	nk)
			• • • • • •

c)	If a so	olution containing 140g of salt in 100g of solvent initially at 95° is cooled to 45°C.	
	(i)	At what temperature will crystals start forming?	(1mk)
	(ii)	How much salt will crystallize out?	(1mk)