NAME \qquad
\qquad

GATUNDU SOUTH FORM FOUR JOINED EVALUATION EXAM

232/1
PHYSICS
PAPER 1
JULY/AUGUST 2016
TIME: 2 HOURS

KENYA CERTIFICATE OF SECONDARY EDUCATION

GATUNDU SOUTH JOINED EVALUATION EXAM

INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the spaces provided above.
- This paper consists of two sections A \& B.
- Answer ALL questions in section A and section B in the spaces provided.
- All working must be clearly shown in the spaces provided.
- None programmable silent electronic calculators and KNEC Mathematical tables may be used.
- Take: - $\mathrm{g}=10 \mathrm{~m} 5^{-2}$
- Specific heat capacity of copper $=400 \mathrm{~J} / \mathrm{kgk}^{-1}$
- \quad Specific heat capacity of oil $=2400 \mathrm{~J} / \mathrm{kgk}^{-1}$
- \quad Specific latent heat of fusion of ice $=336000 \mathrm{~J} / \mathrm{kg}$

FOR EXAMINERS USE ONLY

Section	Question	Maximum score	Candidates score
A	$1-10$	25	
B	11	8	
	12	6	
	13	11	
	14	10	
	15	11	
TOTAL	16	9	

SECTION A (25 MARKS)

1. The figure below shows a spherical ball placed between 2 wooden blocks and a metre rule.

What is the volume of the ball? (3 Mks)
2. A solid weighs 16.5 N on the surface of the moon. The force of gravity on the moon is $1.7 \mathrm{~N} / \mathrm{kg}$. Determine the mass of the solid. (2 Mks)
3. The figure below shows two cylinders containing a liquid and connected with a tight - fitting flexible tube. The cylinders are fitted with air - tight pistons A and B as shown.

When equal forces, F are on the pistons as shown, what is observed. Explain the observation. (3 Mks)
4. A bottle of soda stands on a bench. As the temperature of the surrounding rises the temperature of the bottle also rises. State and explain the effect of this on the stability of the bottle. (3 Mks)
5. Explain how heat loss by ;
(i) Radiation is minimized in a vacuum flask. (1 Mk
(ii) Conduction is minimized in a vacuum flask. (1 Mk)
6. The figure below shows part of the main scale of vernier valipers.

Insert the vernier scale to the main scale, to show a reading of 3.62 C.M (1 Mk)
7. A liquid flows into a pipe of varying cross sectional area. The inlet cross section is 10 cm in diameter. If the liquid leaves the pipe at $0.5 \mathrm{~m}^{3} / \mathrm{s}$ find the inlet velocity of the liquid. (3 Mks)
8. The three springs shown below are identical and have negligible weight. The extension produced on the system of springs is 20 cm .

Determine the constant of each spring. (2 Mks)
9. The figure below shows a uniform metre rule of weight 1 N with two weights 0.18 N and 0.12 N suspended from its ends.

Determine how far from the 0.18 N weight a pivot should be placed in order to balance the metre rule. (3 Mks)
10. An athlete runs at $4 \mathrm{~m} / \mathrm{s}$ from point A to point B and immediately turns and runs back from B to A with a speed of $8 \mathrm{~m} / \mathrm{s}$. Calculate the average speed of the athlete. (3 Mks)

SECTION B: 55 MARKS.

11. (a) In a car, the engine drives an alternator which produces electricity that lights the headlights. List the energy changes involved. (3 Mks)
(b) What is the power output of a pump which can raise 60 kg of water to a height of 10 m every minute. (3 Mks)
(c) If the efficiency of the pump in 11 (b) is 80%, how much power must be supplied (2 Mks)
12. (a) A mass, 5 kg moving with a velocity of $10 \mathrm{~m} / \mathrm{s}$ collides with a 10 kg mass moving with a velocity of $4 \mathrm{~m} / \mathrm{s}$ in the same direction along the same line. After collision, the 5 kg mass moves with a velocity of $7.0 \mathrm{~m} / \mathrm{s}$. Calculate the velocity of the 10kg mass. (3 Mks)
(b) Explain why a steel ball falling through oil, will first accelerate after which the acceleration falls to zero. (3 Mks)
13. (a) State one factor that affects the rate of evaporation. (1 Mk)
(b) A thin wire is passed round a large block of ice and two heavy weights are attached to the ends. It is observed that the wire passes through and the ice remains as a single block.

Explain the observation. (2 Mks)
(c) The graph below shows the cooling curve of naphthalene.

State what is happening at points;
(i) A - B. (1 Mk)
(ii) $\mathrm{B}-\mathrm{C} . \quad(1 \mathrm{Mk})$
(d) A copper calorimeter of mass 50 g contains 80 g of oil at $25^{\circ} \mathrm{C}$.

A piece of ice of mass 25 g at $10^{\circ} \mathrm{C}$ is added to the oil. What mass of ice will be left when the temperature of the calorimeter and its contents will be $0^{\circ} \mathrm{C}$. (6 Mks)
14. (a) An air bubble of volume $0.5 \mathrm{~cm}^{3}$ when released from the bottom of a lake rises to the surface of the lake.
(i) Explain why the bubble rises up. (2 Mks)
(ii) Calculate the volume of the bubble at the surface of the lake given that the lake is 92.7 m deep and the atmospheric pressure is equivalent to 10.3 m of water pressure. (4 Mks)
(iii) What assumption have you made in arriving at your answer? (1 Mk)
(b) A fixed mass of gas at constant pressure has a volume of $600 \mathrm{~cm}^{3}$ at $0^{\circ} \mathrm{C}$. At what temperature will its volume be $1099 \mathrm{~cm}^{3 .}$ (3 Mks)
15. (a) (i) Define centripetal force. (1 Mk)
(ii) Explain why no work is done by a centripetal force acting on a body moving in a horizontal plane. (1 Mk)
(iii) A body of mass m is tied to a string in a vertical plane with a constant speed V . Tensions in the string at positions A, B and C marked T_{A}, T_{B} and T_{C} respectively. Arrange the tensions $\mathrm{T}_{\mathrm{A}}, \mathrm{T}_{\mathrm{B}}$ and T_{C} in ascending order. (1 Mk)

(iv) Explain why wet clothes put in a spin dryer, drys faster when the spin drum is rotated at a higher speed. (2 Mks)
(b) A particle revolves at a frequency of 5 H 3 in a horizontal circle of radius 2 m . Determine its;
(i) angular velocity. (2 Mks)
(ii) Linear velocity. (2 Mks)
(iii) Centripetal acceleration. (2 Mks)
16. The figure below shows a metal sphere of mass 400 kg and volume $0.6 \mathrm{~m}^{3}$ fully submerged in sea water of density $1030 \mathrm{~kg} / \mathrm{m}^{3}$

Determine;
(a) The tension in the cable holding the sphere. (4 Mks)
(b) The radius of the sphere. (2 Mks)
(c) The weight of a solid in air is 5 N . When it is fully immersed in a liquid of density $800 \mathrm{~kg} / \mathrm{m}^{3}$ its weight is 4.04 N .

Determine;
(i) The upthrust of the liquid. (1 Mk)
(ii) The volume of the solid. (2 Mks)

