| Name | Index No | |--|----------------------| | School | Candidates signature | | 233/3 CHEMISTRY Paper 3 | Date | | Paper 3 July/August 2016 Time: 2 ¹ / ₄ Hours | | # WESTLANDS SUB-COUNTY JOINT EXAMINATION ## Kenya Certificate of Secondary Education ### **CHEMISTRY** Paper 3 July/August 2016 **Time: 2¹/₄ Hours** ### **INSTRUCTIONS TO CANDIDATES** - * Write your name and index number in the spaces provided. - * Sign and write the date of examination in the spaces provided. - * Answer **ALL** questions in the spaces provided in the question paper. - You are **Not** allowed to start working with the apparatus for the first 15 minutes of the 2½ hours allowed for this paper. This time is to enable you to read the question paper and make sure you have all the chemicals and apparatus you may need. - * Mathematical tables and silent electronic calculators may be used. - * All working must be clearly shown where necessary. - * This paper has 7 printed pages. - * Candidates should check the question paper to ascertain that all pages are printed as indicated and that no questions are missing. ### For Examiner's Use Only | Question | Maximum score | Candidate's score | |----------------|---------------|-------------------| | 1 | 13 | | | 2 | 14 | | | 3 | 13 | | | Total
score | 40 | | - 1. You are provided with: - Solution Q, dilute hydrochloric acid - Solid R, 1.06g of anhydrous sodium carbonate - distilled water in a wash bottle You are required to determine the concentration of solution Q. ### **PROCEDURE** Place all solid R in a 100ml volumetric flask and add distilled water to dissolve it completely. Top up with more distilled water to the mark and label it as solution R. Pipette 25.0cm³ of solution R into a 250ml conical flask. Add 3 drops of phenolphthalein indicator and titrate it with solution Q from the burette. Record your results in table I below and DO NOT POUR THE CONTENT OF THE CONICAL FLASK. To the contents of the conical flask, add 3 drops of methyl-orange indicator and continue titrating with solution Q from the burette. This time record your results in table II below. Repeat the titrations to complete the two tables below. | Table 1 | | | COM | |--|-------------------|-----------------|-----------| | | 1 st | 2 nd | ers.com | | Final burette reading (cm³) | | astla | 4 | | Initial burette reading (cm³) | | LCS EX | (3 marks) | | a) Calculate the average volume of solution of | ion Q used, V | 8 ^ | (½ mark) | | | isi ^t | | | | al ^s | <i></i> | | | | et papere | | | | | Table II Korftee Past Par | | | | | | 1 st | 2 nd | | | Final burette reading (cm³) | | | (3 marks) | | b) Calculateat barevier resound years of solut | ion Q used, V_2 | | (½ mark) | | |) | | | | | | | | | Calculate: i) The total volume of solution Q used d | luring the titrat | ions. | (1 mark) | | | | | | | ii) The number of moles present in 25.0cm^3 of solution R. (Na = 23.0 , O = 16.0 , C = 12.0) (1 mark) | |---| | | | iii)The number of moles of hydrochloric acid, solution Q which reacted completely with solution R | | using a chemical equation. (2 marks) | | age to a second | | iv) The concentration of solution Q in moles per litre. (2 marks) | | e visiti. With | | ost Palesta | | You are provided with 2.85 g of solid S. You are required to determine the molar heat of solution of solid S. PROCEDURE | | Fill the burette with distilled water. Measure 28.5cm ³ of distilled water from the burette into 100cm ³ plastic beaker. Using a thermometer carefully and gently stir the water as you measure its temperature after every half minute. Record your results in table III below. At exactly 90 seconds, add all solid S to the water at ONCE. Stir thoroughly and take the temperature of the mixture after every half minute to complete the table III below. | 2. (4 marks) II. On the grid provided plot a graph of temperature (y-axis) against time (x-axis) (4 marks) 240 (1 mark) III. On the graph show the change in temperature of T. 120 150 180 210 IV Calculate the heat of solution. (Assume density of solution = 1.0g/cm³, specific heat capacity of solution = 4.2J/g/°C) (2 marks (2 marks) | | of solid S = 96g/mol) | | periment. | (1 mark | |--|-------------------------|--------------------|--|--------------------------------| | | | | | | | | | | | | | V. From the ans | swers obtained in IV an | d V above, determi | ne the molar heat of solution, A | ΔH _{soln.}
(2 mark | | | | | E.com | | | | | | Weigh | | | inferences in | the spaces provided. | | w and write down your observations water in a boiling tube. Inferences | ations and | | | past page | (½mk) | | (½m | | ii) Divide the solution obtained in (i) above into four equal portions and use about 2cm³ of each portion for the tests below. I. To the 1st portion, add about 2cm³ of BaCl_{2(aq)} solution. | | of each | | | | | ons | | Inferences | | | Observati | | | | | | | | | | | | | | (1mk) | | (1m | | III. | (1mk) To the 3^{rd} portion, add $NH_{3(aq)}$ dropwise un Observations | | |-----------|---|--| | –
IV. | (1mk) To the 4 th portion, test the solution using both Observations | red and blue litmus napers | | _ | (1mk) | Inferences Inferences (½mk) | | ii)\ | Write the formula of the cation present in solid | d. | |] | | (½ mark) | | b) Y | You are provided with solid U. Carry out the ton ferences in the spaces provided. | ests below and write down your observations and | | i)]
_ | Take about half spatula endful of the solid pro
Observations | ovided and put in a Bunsen burner flame. Inferences | | | ₹O. | | | | | | | | (½mk) | (½mk) | | | Dissolve the remaining solid U in about 5cm ³ olution into two equal portions. Use the porti | of distilled water in a boiling tube and divide the ons for the tests below. | - I. To the 1st portion, add about 2cm³ of acidified potassium manganate (VII) Observations Inferences (1mk) (1mk) II. To the 2nd portion, test the solution using a pH paper. Observations Inferences $(\frac{1}{2}mk)$ For free past papers visit: www.free Rose www.f