Name	Index No.
School	Candidate's signature
233/3	Date

233/3

CHEMISTRY

Paper 3

July/August 2016

Time 21/4 hours

NTIMA, NYAKI AND MUNICIPALITY CLUSTER **EVALUATION - 2016**

Kenya Certificate of Secondary Education **CHEMISTRY**

> Paper - 233/3 PRACTICAL July/August 2016 Time: $2^{1/4}$ hours

INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the spaces provided above.
- Sign and write the date of examination in the spaces provided.
- Answer ALL the questions in the spaces provided in the question paper
- You are NOT allowed to start working with the apparatus for the first 15 minutes of the 21/4 hours allowed for this paper. This time is to enable you read the question paper and make sure you have all the chemicals and apparatus you may need.
- Mathematical tables and electronic calculators may be used.
- All working MUST be clearly shown where necessary.

FOR EXAMINER'S USE ONLY

Question	Maximum marks	Candidate's score
1	23	
2	17	
Total score	40 This paper consists of	8 printed pages

Candidates should check the question paper to ensure that all the printed pages are printed as indicated and no questions are missing.

1.	You are provided with:
	Hydrochloric acid solution B
	0.1M sodium hydroxide solution C
	Phenolphthalein indicator
	4 pieces of metal M
	Solid Q

You are required to

Determine concentration of solution B

Determine rate of reaction of metal M and hydrochloric acid solution B.

Determine molar heat change: when solid Q is dissolved in water.

Procedure
Using 100cm³ measuring cylinder, place 100cm³ of distilled water in 250ml volumetric flask.
Add 25cm³ of solution B

Label this solution D

Fill the burette with solution D

Pipette 25cm³ of solution C into conical flask and add 2 - 3 drops of phenolphthalein indicator. Titrate the solution D with solution C and stop when the indicator just turns colourless and record in the table below.

		1		3		
	Final burette readings (cm³)					
	Initial burette readings (cm³)					
a)	Volume of solution D used (cm³)				Calculate volume of solu	the average tion D.
	(1 mark)	<u> </u>				
b)	Calculate the number of moles of so (1 mark)	lution C used.				
			• • • • • • • • • • • • • • • • • • • •			
c)	Calculate the number of moles of so	lution D that 1	eacted.			(1 mark)
			• • • • • • • • • • • • • • • • • • • •			
		•••••	•••••		•••••	•••••
d)	Work out the concentration of dilute	hydrochloric	acid soluti	on D in mo	les per litre	(1 mark)
u)	work out the concentration of unute	inyurocinoric	aciu, soiuti		nes per nue.	(1 mark)
			• • • • • • • • • • • • • • • • • • • •			•••••
e)	Determine the original concentration	of hydrochlo	ric acid sol	ution B.		(1 mark)

PROCEDURE II Using 100ml measuring cylinder measure 80cm³ of distilled water and place it in the beaker. Measure the temperature of this solution and record in Table 2 below. Add all solid 6 beaker and stir the mixture. Note the final temperature and record it in the table.	•

I	Α	В	L	E	2
---	---	---	---	---	---

a)

b)

Final temperature (°C)	
Initial temperature (°C)	
Temperature change (DT)	

(3 marks)

	minute components (o)		(5 marks)
	Temperature change (DT)		
+h	e reaction.		Calculate the heat change of
	pecific heat capacity = 4.2 kJ /	g/K , density = $1g/cm^3$)	(2 marks)
•••			
D	etermine the molar enthalpy of	f solution Q (RMM of Q =	80) (2 marks)
•••			

PROCEDURE III

Measure 250cm³ of HCl solution B and put in 100cm³ beaker provided.

Add one of the 1cm pieces of metal M to the solution and at the same time start a stop watch or stop clock and record the time taken for the reaction to come to completion. Repeat the above process but use 20cm³ of hydrochloric acid and 5cm³ of water.

Repeat the same process with different volume of water and hydrochloric acid as shown in the table.

TABLE 3	1	2	3	4
Metal size in cm	1cm	1cm	1cm	1cm
Volume of HCl (cm³)	25	20	15	10
Volume of water (cm³)	0	5	10	15
Total volume (cm³) State the rate factor measu:	25 red in the reaction	25	25	25 (4 mark (1 mar
Time in second (t)		•		(2 2-2
¹ / _t (reciprocal of time)				

a)

Inferences

(1/2 mark)

(1/2 mark)

Dilute the filtrate into five portions.

i) Scoop a little **Abbervations** of filtrate using a clean metallic spat**Inferentices** rn.

ii) To 2nd portion add 3 drops of lead (II) nitrate solution.

iii)	To 3rd portion add 3 drops of Barium nitrate solution	on.
	Observations	Inferences
_		
	(½ mark)	(½ mark)
iv)	To fourth portion add 3-drops of barium nitrate foll	
_	Observations	Inferences
v)	To the 5th portion add 3 drops of acidified potassiu	ım manganate (VII) solution. (1 mark)
_	Observations	Inferences
d)	To the residue in (b) above add dilute nitric (V) aci for parts that follow. (1 mark)	d dropwise till no further change spare products (½ mark
_	Observations	Inferences
e)	Divide the solution got in (d) above into four portion	ons
<i>\</i>	i) To the 1st portion add 2 - 3 drops of NaOH solu	

Observations	Inferences
ii) To the 2nd portion add 2 - 3 drops of $NH_{3(aq)}$ til ($\frac{1}{2}$ mark	
Observations	Inferences
iii)To the 3rd portion add three drops of NaCl solu	ıtion
my ro the ora portion and times drops or react sole	
(1 mark	(1 mark
Observations	Inferences
iv) To the 4th portion add three drops of $KI_{(aq)}$	
(1 mark	(½ mark
Observations	Inferences
(½ mark	(½ mark

Observations	Inferences
(½ mark	(½ mark)