

MANGU HIGH SCHOOL

CHEMISTRY PAPER 2 HULY 2016 TIME: 2 HOURS

NAME:	hanner melting point than the colde of Z. E.	saltgeratele
ADM NO:	INDEX NO	CLASS:

Kenya Certificate of Secondary Education

Mock Examinations Chemistry entrans V to essential and the evolution white special and the evolution with the evolution with the special and the evolution with the evolution with the evolution with the evolution and the evolut Paper 2

Answer ALL the questions in the spaces provided.

This paper consists of 11 printed pages. Make sure that all the pages are printed and that no page is missing.

Turn Ov

1. The following is an extract of the periodic table. Study it and answer the questions that follow. (the letters are not the actual symbols of the elements)

C	TOWN DAY					
3			Z		J	1
	W	R	D	74 10 20 00 1	T	-

(a) Compare the atomic radius of elements V and S

(1mk)

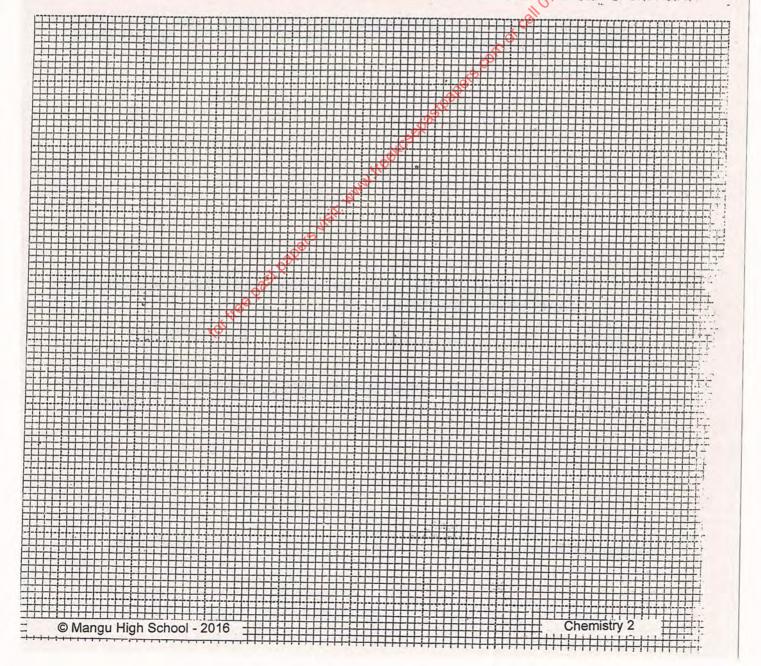
- (b) The oxide of D has a higher melting point than the oxide of Z. Explain this observation (1mk)
- (c) Compare the atomic and ionic radius of element T

(2mks)

- (d) The chloride of W does not conduct electricity in solid state but conducts in molten state. Explain this observation (1mk)
- (e) Describe how you can separate a mixture of the carbonate of V and the carbonate of W. (2mks)
- (f) Describe how you can separate a mixture of the carbonate of V and the carbonate of W (2mks)
- (g) Compare the ionic radius of element W and A

(2mks)

2. I. The reaction between lamps of calcium componate and excess 1M hydrochloric acid takes place according to the following equation.


$$CaCO_{3(s)} + 2HCl_{(g)} \longrightarrow CaZ_{12} + H_2O_{(l)} + CO_2(g)$$

- (a) A part from concentration state two other factors that affects the rate of reaction (1mk)
- (b) Such an experiment produced carbon (IV) oxide at different time intervals as indicated below.

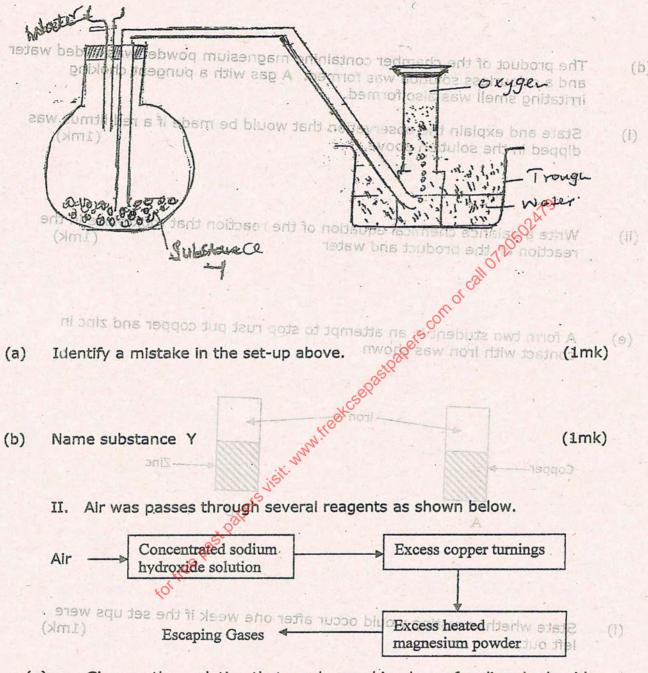
Time (sec)	0	10	20	30	40	50	60	70	80	90
Volume (cm ³)	0	.30	60	75	82	86	88	90	90	90

(c) Plot a graph of volume of gas against time

(3mks)

(d) Use the graph to find the volume of gas produced after 15 seconds (3mks)

- (e) Explain why the volume of CO₂ produced does not exceed 90cm³. (1mk)
- (f) The lamp of calcium carbonate used was found 2.5g in mass. It was impure. Calculate the percentage purity of the lamp. (C=12, O=16, Ca=40) (2mks)


 (M.G.V.= 24dm³)

II. The conversion of SO_2 to SO_3 takes place and reaches equilibrium as per the following equation.

$$2SO_{2(g)} + O_{2(g)}$$
 $2SO_{3(g)}$ DH -197Kjmol⁻¹

(a) State and explain the effect of a decrease in pressure on the yield of (2mks)

(sim The following is a set up used to prepare oxygen gas in the lab. Study it) 3. and answer the questions that follower for noses a svie asbwood

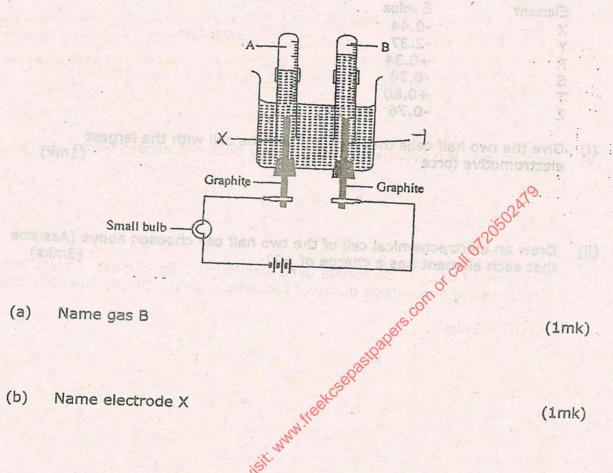
(a) Give another solution that can be used in place of sodium hydroxide solution (1mk)

(1mk)

Explain your answer

(b) State the observation made at the chamber containing copper (1mk)

50


- (c) Name one gas which escapes from the chamber containing magnesium powder. Give a reason for your answer. (1mk)
- (d) The product of the chamber containing magnesium powder was added water and a colourless solution was formed. A gas with a pungent choking irritating smell was also formed.
 - (i) State and explain the observation that would be made if a red litmus was dipped in the solution above. (1mk)
 - (ii) Write a balance chemical equation of the reaction that took place in the reaction of the product and water (1mk)
 - (e) A form two student in an attempt to stop rust put copper and zinc in contact with iron was shown

- (i) State whether rusting would occur after one week if the set ups were left out. (1mk)
- (ii) Explain your answer

(1mk)

4. I. A form four student set up an apparatus as shown below into in order to electrolyze dilute sulphuric (VI) acid.

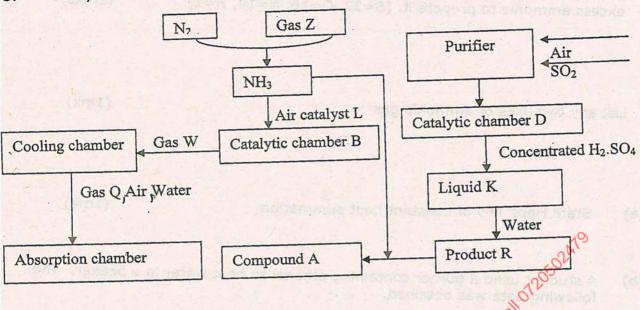
(c) The volume of gas B is half that of gas A. Give the net ionic equation that explains this observation (2mks)

(d) The sulphuric (IV) acid used above was 1M, separately a 1M solution of ethanoic acid was electrolyzed using such a set up. Explain the difference you would expect to observe on the bulb. (2mks)

(e) Study the electrode potentials of the following elements given below and answer questions that follow (the letter are not actual symbols of the elements)

A STATE OF THE PARTY OF THE PAR	
Element	E value
X	-0.44
Y	-2.37g
R	+0.34
S	-0.74
T	+0.80

Z


II. (i) Give the two half cells that would make the cell with the largest electromotive force (1mk)

-0.76

- (ii) Draw an electrochemical cell of the two half cell chooses above (Assume that each element has a charge of +2) (3mks)
- (a) Name gas B Dayson Anne gas B (1mk)

 (b) Name electrode X (1mk)
- (iii) Calculate the electromotive force of a cell consisting of S and T cells. (2mks)
- d) The sulphuric (IV) acid used above was IM, separately a IM solution of ethanoic acid was electrolyzed using such a set up. Explain the dissertance
- (iv) Explain whether it's advisable to store a solution containing S ions in a container made of Z (2mks)

Study the scheme below and answer the questions that follow. 5.

Name the following (a)

(2mks)

Gas W comorca Gas Z (i)

Liquid K_ Gas Q _____ (ii) (2mks)

Identify the catalyst used in catalytic chambers (b) (ii) (i)

Write balanced chemical equations for the following reactions (c)

(1mk) Reaction between liquid K and water (i)

(1mk) Reaction at the absorption chamber (ii)

(1mk) Catalytic chamber B (iii)

Explain why it is not advisable to dissolve the product of chamber D in water (d) (1mk)

			ammonia to prepare it. (S=32, O=16, N=14, H=1)	(2mks)
	(f) Lis	t any	two uses of ammonia gas	(1mk)
5.	(a)	Stat	te Hess' law of constant heat summation	(1mk)
	(b)		ident used a burner containing ethanol to heat water in a wing data was obtained. Mass of water = 500g Initial mass of burner + ethanol = 265.8g Before burning Final mass of burner + Ethanol = 264.65g After burning Initial temperature of water = 22.0°C Final temperature of water = 2	beaker. The
	V SALE	(i)	Determine the mass of ethanol burnt	(1mk)
		(ii)	Determine the moles of ethanol burnt	(1mk)
	(inte	(111)	If the molar enthalpy of combustion of ethanol is -1 calculate the heat gained by water during the comb	370kjmol ⁻¹ , ustion above (2mks)
	CARCITO	(iv)	Hence calculate the final temperature of water Z.	(2mks)

(c) The heat of combustion of propane, carbon and hydrogen are given below.

 Δ Hc $C_3H_8 = -2220$ KJmol⁻¹ Δ Hc C = -393KJmol⁻¹ Δ Hc $H_2 = -286$ KJ mol⁻¹

- (i) Draw an energy level diagram linking the enthalpy of formation of propane and the above enthalpies of combustions (2mks)
- (ii) Use the energy cycle to calculate the enthalpy of formation of propane (2mks)
- 7. I. (a) Describe how a pure and dry sample of lead (II) carbonate can be prepared in the lab starting with lead oxide (3mks)

(b) Give the IUPAC names of the following compounds

	II.	Unde	er certain condition ula of one of the p	s, Hexane corrects is Co	an be conver H ₈	ted to two pro	ducts. The
	. ((i) W	rite the formula of	the other p	roduct	2 - 2 - 082 2 - 2 - 082	(1mk)
		value (1)	the enthalpy of fo	projett many	sib is vel ve	SUBJECT MENU	6)
	(1	ii) D	escribe a simple cl wo products forme	nemical read d in (i) abov	tion to show e.	the difference	between the (2mks)
			, , , , , , , , , , , , , , , , , , ,			agent of the second	e y arrive
						2 ⁴	0
	Ш	buta	e the name and stranol and ethanolc a	acid react in	the presence	e of concentrat	ed when ed sulphuric
	SOLUTION.	(i)	Name Structural formula	unga yahi bor	CARREST SECTION	omol from	(1mk)
	(exist)	(ii)	Structural formul	ae	csepastrane	personal contractions	(1mk)
				,,e ^è	Kesex		
	(a)	State	Gay Lussac's law	it. www.l.			(1mk)
			electronicos de			Ut arts avila	(d)
	(b)	comb	³ of a gaseous hydroustion, forming 40 measure at the sa	cm3 of carbo	on (IV) oxide	. Assuming th	at all volume
		(i)	The value of X	H · D	0 = 9		(1mk)
		(ii)	The volume of ste	eam formed	8 H H 1 1 1	1	(1mk)
)	What	volum	sulphur (IV) oxide (in the of nitrogen (IV) in the second	oxide gas w	through a po Il diffuse thr	prous plug in 40 ough the same	seconds. plug in 20 (3mks)