	_	
Name: C	llass:	Adm.No

CHEMISTRY THEORY Paper 1 March - April 2017

Time: 2 hours

MOKASA JOINT EXAMINATION

MARCH - APRIL 2017

Kenya Certificate of Secondary Education

nnn.freekcsep **CHEMISTRY**

PAPER 1

INSTRUCTIONS TO CANDIDATES

- Answer ALL the questions in the spaces provided.
- Electric calculators fx 82 ms is allowed.
- All working must be clearly shown.

FOR EXAMINER USE ONLY

Question	Maximum score	Candidate's score
1 – 31	80	

1. When Sulphur is heated the following reaction takes place.

 $S_{(s)}$ $S_{(l)}$ $S_{(g)}$

(1 mark) (a) Name process A and B. Α В (b) State one application of the process A. (1 mark) Name one common characteristic of salts which undergo process A when they are (c) heated in a boiling tube. (1 mark) A student was stung by a bee outside the chemistry lab. The teacher applied a 2. (a) solution of ammonia to the place. Explain why. (2 marks) (b) Explain why it is not advisable to use a solution of potassium hydroxide. (1 mark) 3. A sample of water in a beaker was found to boil at 105°C at sea level. Explain this observation. (1 mark)

4.	State	the mode of conduction of electricity in the following substances.	(2 marks)
	(i)	Copper rod.	
	(ii)	Molten copper (II) oxide	
5.	Dry a	ammonia was passed over heated copper (II) oxide in a combustion tube	2.
	(a)	State and explain the observation that was made.	(2 marks)
	(b)	Write a balanced chemical equation for the reaction above.	(1 mark)
6.		62 v 1 65 v 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1	9% and 31% (2 marks)
7.	The n	ement X has 2 isotopes $^{-2}$ X and $^{-2}$ X. If their percentage abundance is 69 ectively find the R.A.M of X. The section of the R.A.M of X. is the section of the R.A.M of	nloride is
		C. Explain the huge difference in their melting points.	(2 marks)
		T KOLO	
		<i>'</i> Ω'	
8.	Expla	nin how the "greenhouse effect" occurs.	(2 marks)

9.	Use d	lots (•) or cr	osses (x) to sh	ow bonding in the following molecules.	(2 marks)	
	(a)	Silicon hyd	dride			
	()	J				
	(L)	1 1 .				
	(b)	hydroxoni	ium ion			
				oel ³		
				city or		
				3003		
				VCS 1		
10.			per (II) oxide d	lescribe how CRYSTALS of copper (II) s		
	made	<u>)</u> .		w.l.	(3 marks)	
				in		
				ist		
				1.2		
	es Que					
			S Ogs			
	•••••		KISS			
			§			
11.	The t	able below s	shows the first	ionization energies of element X and Y.		
				1		
			Element	Ionization energy kJ/mole 494		
			Y	736		
			1	730		
	(a)	Define the	term first ioni	zation energy.	(1 mark)	
		•••••	•••••			

	(b)	Compare the reactivity of X and Y. Explain your answer.	(2 marks)
2.	(a)	Write the chemical formular of the main compound in Bauxite.	(1 mark)
	(b)	Name the chief impurities found in chief ore of aluminium.	(1 mark)
	30000		
3.	(a)	Explain why it is not proper to cook using charcoal in an enclosed	(2 marks)
	300,000	∞ ,	
	70000		
	(b)	When carbon (IV) oxide is bubbled through calcium hydroxide for types of reactions occur; write the equation for each of the reaction	n. (2 marks)
		iii	
		S No	
4.		full of moist chlorine was inverted over a jar of hydrogen sulphide as	
4.	A Jai	at V	snown below.
		Moist chlorine	
		Kiego	
		Moist chlorine	
		Miles and Miles	
		Hydrogen sulphide	

	(a)	State the observation made.	(1 mark)
	(b)	Write the equation for the reaction and show using oxidation no. that above is a redox.	nt the reaction (2 marks)
15.	Chlo	rine was bubbled through a solution of potassium iodide;	
	(a)	State the observation made.	(1 mark)
	(b)	Write an ionic equation for the above reaction.	(1 mark)
16.	The	solubility of Iron (II) sulphate at 22°C is 15.65/100g of water. Calculat	e the mass of (3 marks)
		(II) sulphate crystals in 90g of saturated from (II) sulphite solution.	
17.	The c	diagram below was used to electrolyze molten copper (II) chloride using the copper (II) chlor	ng graphite
		B A	
		/ Heat	

(a)	Explain the role of heat on the above set up.	(1 mark)
(b)	Name electrode A and B.	(1 mark)
	Α	
	В	
(c)	If 96500 C of electricity was used during electrolysis of molten copper chloride above. Work out the volume of chlorine liberated at s.t.p. (If	• •
	sepastpapars.com	
BaCl	$BaSQ_{4(s)} + CuSO_{4(aq)} \longrightarrow BaSQ_{4(s)} + CuCl_{2(aq)}; \Delta H = -17.7kJ_A$	/mole
Calcu	ulate the temperature change when $900 \mathrm{cm^3}$ of $1 \mathrm{M}BaCl_2$ and $600 \mathrm{cm^3}$ of	
	(b) Copp BaCl Calcu	(b) Name electrode A and B. A B (c) If 96500 C of electricity was used during electrolysis of molten coppe

19.	resid	en 17.2 g of hydrated calcium sulphate was heated to a condue was obtain. Find the value of n in $CaSO_4 \bullet nH_2O$. = 40, S = 32, O = 16, H = 1)	stant mass, 13.6g of the (2 marks)
20.	(a)	Define the term allotropes.	(1 mark)
	(b)	Explain how diamond and graphite can be proved to be	allotropes. (2 marks)
21.	In an	n experiment, ammonium chloride was heated in a boiling litmus paper at the mouth of test tube. State and explain t	the observation made. (3 marks)
		to,	

19.

22.		cm ³ of gas R diffuses through a porous pot in 110 seconds while some volses through in 165 seconds. Find the R.M.M of gas R. ($C = 12, O = 16$) (3	
23.	requ	cm 3 of 1M HCl was reacted with 5cm of magnesium ribbon. The resulting ired 15.0cm 3 of IM Na OH for complete neutralization. Determine the manesiumribbon used. (Mg = 24).	•
		e the process that takes place when the fat or oils are boiled using alkalis. chlorine is reacted with methane	
24.	Nam	e the process that takes place when the	
	(a)	fat or oils are boiled using alkalis.	(1 mark)
	(b)	chlorine is reacted with methane	(1 mark)
25.		nol and dimethylether have formulae C_2H_6O . Explain why ethanol C_2H_6O 0 and dimethyl ether CH_3OCH_3 has a boiling point -24 $^\circ$ C.	

27. Below is part of a synthetic polymer.

$$\begin{bmatrix} H & H & H & H \\ \overset{1}{\mathsf{C}} & \overset{1}{\mathsf{C}} & \overset{1}{\mathsf{C}} & \overset{1}{\mathsf{C}} & \overset{1}{\mathsf{C}} \\ \overset{1}{\mathsf{H}} & \overset{1}{\diamondsuit} & \overset{1}{\mathsf{H}} & \overset{1}{\diamondsuit} & \overset{1}{\mathsf{H}} \end{bmatrix}$$

Determine the number of monomers in the polymer above give the RFM of the polymer is 208000 &has a formular of C_6H_5 . (3 marks)

$$(C = 12, H = 1)$$

28. Calculate the enthalpy change for the combustion of ethyne using the equations below.

$$C_{(s)} + O_{2(g)} \longrightarrow CO_2 \Delta H_1 = -394 \text{kJ/mol}^3$$

$$2H_{2(g)} + O_{2(g)} \longrightarrow 2H_2O \quad \Delta H_2 = 286$$
kJ/mol

$$2C_{(s)} + H_{2(s)} \longrightarrow C_2H_{2(g)} AH_3 = +226 \text{ kJ/mol}$$

	(b) State two applications of radioactivity.	(2 marks)
	ان الم	
30.	State one way of disposing radioactive substances.	(1 mark)
31.	Study the chart below and answer the questions that follow. Rock salt A Hydrogen Chloride R KMnO ₄ Gas T Iron Solid S	
	(a) Name reagent used in step A.	(1 mark)
	(b) Write the ionic equation for formation of white solid R.	(1 mark)
	(c) Write an equation for formation of solid S.	(1 mark)

A mass of X grammes of radioactive isotope active decay to 5 grams in 100 days. If the half-life is 25 days, calculate the initial mass. (2 marks)

29.

(a)