\qquad

Date: \qquad Candidate's Signature: \qquad

232/3
PHYSICS
Paper 3 (Practical)
KCSE MOCKS 2017
Time: 2 ½ Hours

INSTRUCTIONS TO THE CANDIDATES:

- Write your name and index number in the spaces provided above.
- Sign and write the date of the examination in the spaces provided above.
- You are supposed to spend the first 15 minutes of the $2 \frac{1}{2}$ hours allowed for this paper reading the whole paper carefully.
- Marks are given for a clear record of the obsejration actually made, their suitability, accuracy and the use made of them

FOR EXAMINER'S USE ONEY

Question	Maximum \&core	Candidate’s Score
1	20	
2	20	
TOTAL	40	

This paper consists of 7 printed pages. Candidates should check to ascertain that all pages are printed as indicated and that no questions are missing.

You are provided with the following;

- A 40ml glass beaker
- A Bunsen burner
- A thermometer
- A stop watch
- A tripod stand and a measuring cylinder 100 ml
- A wire gauze
- A source of heat

Set up the apparatus as shown in the diagram below.

Measure $100 \mathrm{~cm}^{3}$ of water and pour it into the beaker. Take the initial temperature of the water.
T0.
Now heat the water to a temperate of $90^{\circ} \mathrm{C}$. Switch off the gas tap and place a thermometer into the beaker and start the stop watch whenthe temperature is $65^{\circ} \mathrm{C}$. Take the temperature $\mathrm{T}^{\circ} \mathrm{C}$ of water every two minutes.

Record your results in the table below.

Time (t) (min) (T)	2	4	6	8	10	12	14
Temperature (T) ${ }^{\circ} \mathrm{C}$							
$\left(\mathrm{T}-\mathrm{T}_{0}\right)^{0}$							
Log (T-T $\left.\mathrm{T}_{0}\right)$							

(i) Plot a graph of Log ($\mathrm{T}-\mathrm{To}$) against Time (t).

[^0]
QUESTION TWO

This question has two parts A and B. answer both parts.

PART A

You are provided with the following:

- A meter rule
- Two identical 100 g masses
- About 200m1 of liquid L in 250 m 1 beaker
- Three pieces of thread, each about half metre long
- Stand with clamps
- Tissue paper.

Proceed as follows:

(a) Using a stand and one piece of thread, suspend the metre rule in air such that it balances horizoally. Record the position of the centre of gravity. G.

$$
\mathrm{G}=
$$

\qquad mm

NOTE: The mere rule should remain suspended at this point througßout the experiment.
(b) Set up the apparatus as in figure 2 below.

Figure 2

Suspend the mass A at a distance $\mathrm{x}=50 \mathrm{~mm}$. Adjust the position of mass B until it balances mass A immersed in liquid L .
Record the distance d, of mass B from the pivot.
Repeat the same process for other values of x in table 2 below and complete the table.

$\mathrm{x}(\mathrm{mm})$	50	100	150	200	250	300
$\mathrm{~d}(\mathrm{~cm})$						

(c) Plot a graph of d (y axis) against x .

(i) The value of F
(ii) The up thrust U , Using the equation $\mathrm{U}=\mathrm{W}-\mathrm{F}$.

PART B

You are provided with the following:

- A concave mirror with holder
- A screen
- A meter rule
- A candle
- A match box (to be shared)

Proceed as follow:

(f) Set up the apparatus as in figure 3 below.

(g) Put the object at a distance $u=30 \mathrm{em}$ from the mirror. Adjust the position of the screen until a sharp image is formed on the screen. Record the distance V.
(h) Repeat procedure (b) above for the distance $u=40 \mathrm{~cm}$ and record the new distance V. complete the table 3 below.

$\mathrm{U}(\mathrm{cm})$	$\mathrm{V}(\mathrm{cm})$	$\mathrm{m}=\mathrm{V} / \mathrm{U}$	$(\mathrm{m}+1)$
30			
40			

(i) Given $=\frac{V}{(m+1)}$, calculate the values of f hence determine the average value f_{av}
\qquad
\qquad

[^0]: Antilog $\mathrm{K}=65-\mathrm{T}_{\mathrm{R}}$.

