\qquad
\qquad
Index No. \qquad
Class: \qquad
\qquad
232/3
PHYSICS
PRACTICAL
JUNE/JULY 2017
TIME: 2 ½ HRS

KASSU EDUCATIONAL IMPROVEMENT EXAMINATION

Kenya Certificate to Secondary Education

PHYSICS PAPER 3
PRACTICAL

Instructions

- Write your name, admission number, class andsignature in the spaces provided at the top of the page.
- Answer all the questions in the spaces provided in this paper.
- You are supposed to spend the first 15 minutes of the $21 / 2$ hours allowed for this paper reading the whole paper carefullybefore your start.
- Marks will be given for clear record of observations actually made, for their suitability and accuracy, and the use made of them.
- Candidates are advised torecord their observations as soon as they are made.
- Electronic calculators and mathematical tables may be used.

FOR EXAMINER'S USE ONLY

Question(s)	Maximum Score		Candidate's Score
1	A	15	
	B	5	
2	A	16	
	B	4	
TOTAL		40	

This paper consists of 9 printed pages. Candidates are advised to check and to make sure all pages are printed.

QUESTION 1

PART A

You are provided with the following;

- A lighting bulb (In a complete circuit with switch)
- 100 ml beaker filled with water
- White screen.
- Metre rule
- A piece of plasticine

Proceed as follows:
(a) (i) Firmly fix the metre rule on the bench using plasticine provided.

Position a lighting bulb at a distance of 7 cm from the centre of the beaker. The bulb filament should be at a horizontal position as the middle of the vertical height of the beaker.

(ii) Switch on the bulb and adjust the position of the screen until a sharp vertical line of light is observed on the screen. Measure and record the distance y cm. Tabulate your results.

Table

Distance x (cm)	Distance y (cm)	y / x	
7			
10			
15			
20			
25			
30			

(b) (i) Repeat the experiment for values of $\mathrm{x}=10,15,20,25,30 \mathrm{~cm}$. Determine the values of y / x.
(c) Plot a graph of y / x against $y \mathrm{~cm}$.

(d) (i) Determine the slopes S of the graph.
(3 marks)
(e) Given that $\frac{y}{x}=s y-1$

Determine the value of y when $\frac{y}{x}=1$.
(2 marks)

PART B

You are provided with the following;

- A helical spring with pointer
- A 200 g or $2 \times 100 \mathrm{~g}$ mass
- A stop watch
- A metre rule
- 1 stand + clamp + Boss

Proceed as follows.
(a) (i) Clamp the metre rule vertically with the 0 cm mark at the top. Hang the spring on the clamp such that the pointer slides on the metre rule.

(ii) Record the position of the pointer for the unloaded spring. Unloaded spring position lo = \qquad cm mark.
(b) Load the spring with 200 g mass and determine its extension e \qquad

$$
\mathrm{e}=
$$

\qquad m
(c) Displace the mass on the spring by pulling it slightly downwards and release it to oscillate freely. Record the time for 10 complete oscillations.

Time for 10 oscillations $=$ \qquad seconds

Find the periodic time T.

$$
\mathrm{T}=.
$$

\qquad ...s
(d) From the formula.
$g=\frac{4 \pi^{2} e}{T^{2}}$. Determine the value of g_{c}

QUESTION 2

PART A

You are provided with the following;

- A voltmeter $0-5 \mathrm{~V}$
- A capacitor C
- A switch
- A stop watch
- 9 connecting wires
- 3 cells and 3 cell holder to hold $1-3$ cells
- A resistor R_{1}
- Ammeter ($0-1$) A
- A resistor R_{2}

Proceed as follows:
(a) Set up the circuit as shown in the figure.

(i) Charge the capacitor C by connecting the crocodile clip to S. Record the reading of the voltmeter, V_{0}. mark)
$\mathrm{V}_{0}=$ \qquad
(ii) Calculate the value of the current I_{0} given that $\mathrm{I}_{0}=\frac{V_{0}}{R 1}$ (where $\mathrm{R}_{1}=4.7 \mathrm{x}$ $10^{3} \Omega$)
(iii) While the voltmeter shows maximum voltage V_{0} open the crocodile clip from S and start the stop watch simultaneously. Stop the stop watch when the voltage has dropped from V_{0} to 4.0 V . Read the record in the table the time taken.
(4 marks)
Voltage $\mathrm{V}=\mathrm{V}_{0}$ when $\mathrm{t}=\mathrm{O}_{(\mathrm{s})}$

Voltage V		4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5
Time, $\mathrm{t}(\mathrm{s})$	0						o		

(iv) Reset the stop watch and close the switch. Repeat the procedure in (i) - (iii) to measure and record the time taken for the voltage to drop from V_{0} to each of the other values on the table.
(b) On the grid provided, plot a graph of voltage $V(y$-axis) against time (s).

(ii) Use the graph to determine the time t at which $V=\frac{V_{0}}{2}$

(1 mark)
(c) Determine the resistance of the voltmeter R_{v} given that;
$t=0.693 \mathrm{CR}_{\mathrm{v}}$ where C is the capacitance of the capacitor.

PART B

(a) Connect the circuit as shown below.

Close the switch and record the ammeter and voltmeter reading. (1 mark)
P.d $V(v)=\quad v$

Current $\mathrm{I}(\mathrm{A})=\mathrm{A}$
Hence determine the value of resistance R_{2}.
(2 marks)

