Name: Index No: ~

Candidate's signature	
Date	

Muungano KCSE Trial Exam

233/1 **CHEMISTRY** PAPER 1

INSTRUCTIONS TO CANDIDATES

- -
- -
- RUCTIONS TO CANDIDATES Write your name and index number in the space provided Answer All the questions in the space provided Mathematical tables and electronic calculators model All working must be clearly shown wi -
- Persvisit www Por F _

For Examiner's Use Only

Section	Question	Maximum Score	Candidates Score
Atte	1 – 28	80	
KO.			

This paper consists of 10 printed Pages

Candidates should check the question paper to ensure that all the pages are printed as indicated and no questions are missing

1. A Student in form four placed a thermometer in molten naphthalene at 85° C and recorded the temperature and time until the naphthalene solidified. From the values obtained, the figure below was drawn.

3. Study the flow chart below and answer the questions that follow.

		3	
((b)	<i>Write</i> a balanced <i>chemical equation</i> between the yellow solid and dilute	nitric acid.
			(1mk)
•••••	•••••		
•••••	•••••		
	(c) W	rite the formula of the complex ion in solution F and evaluin this observat	ion (1mk)
		The the formula of the complex for in solution F and explain this observat	1011. (1111K)
4. <i>Expl</i>	<i>ain</i> wl	hy when hydrogen chloride gas is dissolved in water, the solution conducts	s electricity
while	e a sol	ution of hydrogen chloride gas in methyl benzene does not conduct electric	city.
		CO.	(3mks)
		and the second sec	
		25 ¹¹	
5. Matte	er exis	sts in three states which can be related as shown in the diagram below.	
	S	plid \xrightarrow{P} Gas	
	1	Hee Hee	
		Liquid	
<i>Name</i> n	rocess	ses: P:	(1mk)
rume p	100055	VIS.	(THK)
		<i>R</i> :	(1mk)
1	Explai	in whether process gos exothermic or endothermic	(1mk)
		3 K	
•••••	•••••		•••••
	•••••	KON CONTRACTOR OF	•••••
6. (a)	What is meant by allotropy?	(1mk)
	()		()
	•••••		
	•••••		
	(h)	Name two allotropes of carbon	$(1\mathbf{mk})$
	(0)	Trame two anotropes of carbon.	(TIIIK)
((c)	Give one use of charcoal in the sugar refinery industry.	(1mk)
• • • • • • • • • • •	•••••		•••••

7.	(a) <i>State</i> Graham's Law of Diffusion	(1mk)
•••••		
	(b) A given volume of ozone (O_3) diffused from a certain apparatus in 96 seconds the time taken by an equal volume of carbon (IV) oxide to diffuse under the same	. Calculate
	conditions. $(C=12, O=16)$	(2mks)
•••••		
•••••		
		••••••
8.	(a) <i>Name two ores</i> from which copper is extracted.	(1mk)
•••••	st Cont	
	(b) During the extraction of copper metal the ore is subjected to froth floatation. G reason why this process is necessary.	live a (1mk)
	it was	
	(c) One of the alloys of copper is brass. <i>State</i> its two uses.	(1mk)
<i>9</i> .	Draw a dot (\bullet) and cross (X) diagram to show bonding in sulphur (IV) oxide	(3mk)

4

10. A form one class carried out an experiment to determine the active part of air. The diagram below shows the set-up of the experiment and also the observation made.

12. The table below shows the pH values of solutions J to N

Solution	J	K	L	М	N
рН	5	13	2	10	7

(a) Which solution contains the largest concentration of hydroxides ions? (1mk)

(b) Which solution is likely to be a solution of acetic acid? (1mk)

13. The scheme below was used to prepare a cleansing agent. Study it and answer the questions that follow.

6

16. The table below shows tests that were carried on three portions of a solution and the results obtained. Study it and answer the questions that follow:

TEST	TS	OBSERVATION
1 Addit	tion of aqueous ammonia to portion 1	White ppt soluble in excess
2 Addit	tion of a few drops of acidified barium nitrate to p	ortion 2 White precipitate formed
3 Addit	tion of few drops of lead (II) nitrate to portion 3	A white precipitate formed
a)	Identify the	
	i) Anion present	
	ii) Cation present	(1mk)
b)	<i>Write</i> ionic equation for test 3.	(1mk)
50c e taken iditions.	m ³ of carbon (IV) oxide diffuses through a porous by 75cm ³ of Nitrogen (IV) oxide to diffuse throug (C = 12, O=16, N=14)	s place is 15 seconds. <i>Calculate</i> the same plate under similar (3mks)
The a)	e formula given below represents a portion of a po $ \begin{bmatrix} H & H & H & H & H \\ -C & C & -C & -C & -C \\ 0 & H & 0 & H & 0 & H \end{bmatrix} $ Give	lymer.
	i) The <i>name</i> of the polymers.	(1mk)
	ii) The <i>structure</i> and the <i>name</i> of the mo formed.	nomer from which the polymer is (1mk)

19. During purification of copper by electrolysis, 1.48g of copper was deposited when a current was passed through aqueous copper (II) sulphate for two and half hours. *Calculate* the amount of electricity that was passed. (Cu=63.5, 1 Faraday = 96500C) (3mks)

.....

20. The set-up below shows how gas A was prepared and reacted with heated magnesium

22. Hydrazine gas $\overset{H}{\underset{H}{\rightarrow}} N - N \overset{H}{\underset{H}{\rightarrow}}$ burns in oxygen to form nitrogen gas and steam according to the equation below. *Using* the bond energies given below, *calculate* the enthalpy change for the reaction in the above equation (3mks)

Bond	Bond energy (KJ/mol)
N N	944
N - N	163
N - H	388
O = 0	496
Н - О	463

•••••			
•••••			
23. 5.0 there v	Og of ca was no∶	licium carbonate were allowed to react with 25cm ³ of 1.0M hydrochloric act further reaction. <i>Calculate</i> the mass of calcium carbonate that remained unr	id until eacted. (3mks)
		Cert Cort	
24.	In the	extraction of iron metal, limestone is added at a certain stage.	
	i)	<i>Explain</i> the main role of limestone.	(1mk)
	ii)	<i>Name</i> two reducing agents in the extraction of iron.	(1mk)
•••••			
	iii)	State one way in which impurities affect properties iron.	(1mk)
25.	a) when	The formula for cane sugar is $(C_{12}H_{22}O_{11})$. Use an equation to <i>show</i> what sugar is added to conc. Sulphuric (VI) acid.	happens (1mk)
	b)	<i>What name</i> is given to the type of reaction above?	(1mk)

	c)	<i>Calculate</i> the oxidation state of sulphur in sodium thiosulphate	$(Na_2S_2O_3)$ (1mk)
·····			
26.	You a	are given the following half equations.	
	$I_{2(S)} + 2$	$2e^{-}$ $2I^{-}_{(aq)}$ $E^{\theta} = +0.54$	
	$Br_{2(S)} +$	$2e^ 2Br^{(aq)}$ $E^\theta = +1.09V$	
	a)	<i>Write</i> an overall equation for the cell reaction.	(1mk)
			,off
	b)	Calculate the E value of the cell.	(1mk)
•••••	•••••	R	
	c)	<i>Name</i> the oxidizing agent.	(1mk)
27. volu	A hyd ame of 2.	drocarbon gas Y in which the percentage of hydrogen by mass is 1 24dm ³ at s.t.p and weighs 7g	4.3% occupies a
•••••	i)	Determine the empirical formula of Y. (C=12, H=1.0)	(2mks)
	•••••		
	ii)	<i>Give</i> the structural molecular formula of <i>Y</i> .	(1mk)
 28.	State	<i>two</i> application of electrolysis.	(2mks)
29. only	Using re , explain	agents provided (<i>Zinc powder</i> , <i>Nitric</i> (<i>V</i>) <i>acid</i> (<i>dilute</i>), <i>Water</i> , <i>Sol</i> , how you could prepare solid Zinc carbonate.	id sodium carbonate) (2mks)

10