Name: Index No: Candidate's signature.

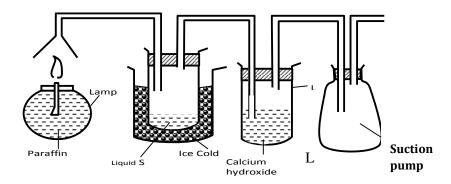
Date.

Muungano KCSE Trial Exam

233/2
CHEMISTRY
PAPER 2
July 2017
2 Hours

INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the space provided
- Answer All the questions in the space provided
- Mathematical tables and electronic calculators may be used
- All working **must** be clearly shown where necessary.


For Examiner's Use Only

	Question	Maximum Score	Candidates Score
	1,51	12	
	2	13	
, }	3	10	
	4	9	
	5	11	
	6	13	
	7	12	
	TOTAL	80	

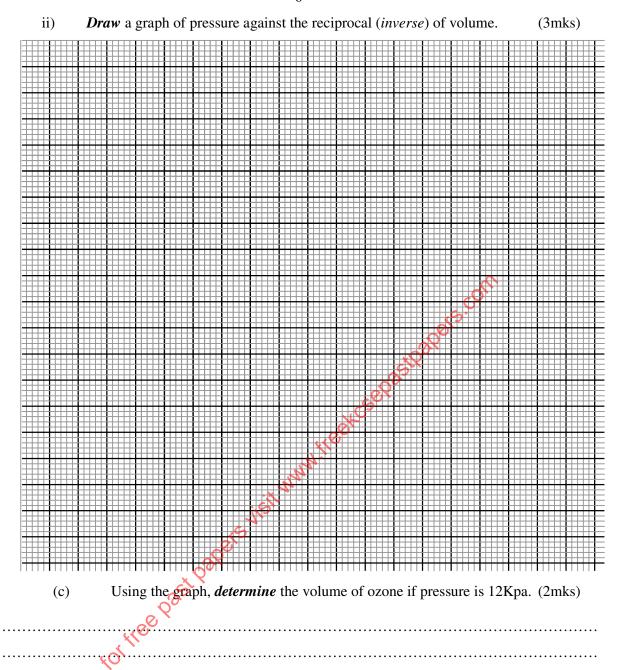
This paper consists of 10 printed Pages

Candidates should check the question paper to ensure that all the pages are printed as indicated and no questions are missing

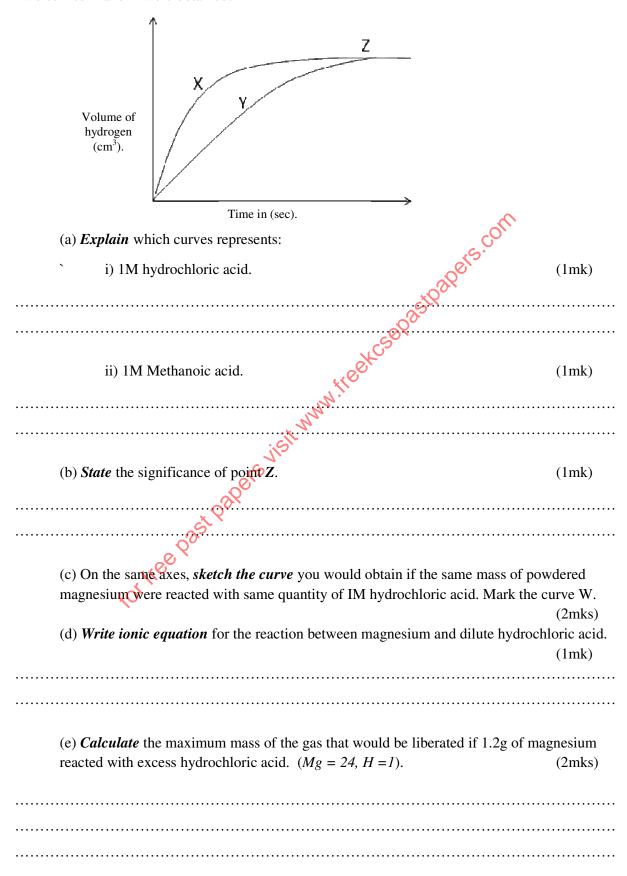
1. Study the set-up of apparatus below and answer the questions that follow.

a)	State and explain the observation that would be made in tube L	as the experiment
progre	esses in the first few minutes.	(2mks)
	Sie i	ř
b)	How would the observations in the tube L change if the experim	ent is carried out for
a lo	ng time. <i>Explain</i> using a chemical equation.	(2mks)
	77.12°	
-)	in	l' 4-1 (21)
c)	State three observations made when liquid S is reacted with so	
	- Cost V	
d)	State the use of the suction pump in this experiment.	(1mk)
e)	Diamond and graphite are allotropes of carbon. Graphite condu	cts electricity and
	mond does not. <i>Explain</i> this phenomenon.	(2mks)
f)	State two uses of carbon (IV) oxide.	(2mks
, .		

2. Study the information in the table below and answer the question that follow, letters do not represent actual symbols of the element.


Atomic No.	Melting point	Boiling point	Atomic radii	Ionic Radii
3	-179	1340	0.108	0.100
9	-220	-188	0.101	0.105
11	98	890	0.135	0.132
12	650	1110	0.126	0.124
13	660	2470	0.125	0.120
15	442/590	280	0.111	0.119
16	113/119	445	0.103	0.109
17	-101	-3	0.109	0.120
19	63.5	-775	0.167	0.160
	9 11 12 13 15 16 17	3 -179 9 -220 11 98 12 650 13 660 15 442/590 16 113/119 17 -101	3 -179 1340 9 -220 -188 11 98 890 12 650 1110 13 660 2470 15 442/590 280 16 113/119 445 17 -101 -3	3 -179 1340 0.108 9 -220 -188 0.101 11 98 890 0.135 12 650 1110 0.126 13 660 2470 0.125 15 442/590 280 0.111 16 113/119 445 0.103 17 -101 -3 0.109

Write the electronic configuration of an ion of elements T and U .	(1mk)
Why do the elements represented by R and S have two values of melting properties R and R have two values of melting properties R and R have two values of melting properties R and R have two values of melting properties R and R have two values of melting properties R and R have two values of melting properties R and R have two values of melting properties R and R have two values of melting properties R and R have two values of melting properties R and R have two values of melting R and R have two values of R have R have two values of R have two values of R have two va	point? (1mk)
Select an element: (i) Which is the most electronegative?	(1mk)
(ii) That belongs to period 4, <i>explain</i> .	(2mks)
Explain why: (i) Ionic radius of \mathbf{R} is bigger than its atomic radius.	1mk)
	Why do the elements represented by R and S have two values of melting process. Select an element: (i) Which is the most electronegative? (ii) That belongs to period 4, explain.


	(ii) The atomic radius of L is bigger than that of R yet they are in the sai period.	(1mk)
	(e) Using dots (.) and cross (x) to <i>represent</i> outermost electron show bonding is compound formed between L and M .	n the (2mks)
	(f) Write an equation for the reaction that occurs between U and water.	(2mks)
	(g) Describe how a solid mixture of the sulphate of element N and lead (II) sulphate separated into solid sample of dry lead (II) sulphate.	(2mks)
3. The	urrangements below show a set-up to investigate the effect of an electric current on II) iodide.	
	Carbon rod	
	Solid lead II iodide	

	(b)	State three observation	s made after	correcting t	he mistake	s.		(2mks)
	(c)	What particles are response	onsible for e	electrical con	ductivity?			(1mk)
	(d)	Write the equations for				ectrodes		(2mks)
		Indicate on the diagram	direction o	f flow of electrolysis pro	asti	nt.		(1mk) (2mks)
4.	a)	State Boyle's law.	is visit wh	M. Ho				(2mks)
	b)	The table below shows to mass of ozone gas.			the pressu	re and v	olume o	f a fixed
	Pressu	ure (K pa)	1	4	8	16	20	160
	Volur	me (cm ³)	140	40	20	10	8	1
	Invers	se of volume 1/v (cm ⁻³)						

i) Complete the table by filling the inverse of volume. (3mks)

5. Equal masses of magnesium ribbon were reacted separately with equal volumes of 1M hydrochloric acid and 1M methanoic acid. The results were plotted on a graph as shown below. Two curves X and Y were obtained.

(f) Calc r.t.p) = 24 dn		of the gas pr	oduced in (e)	above at r.t.p (molar g	gas volume at (3mks)
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
6. I. Study the struct	ture below and a	nswer questic		v	
	0		0.	<u>ova</u> lent bond	
0	0_	0	_0	OSulphur atom	
		0			
				coll	
	servation is mad	e when the m	olecule above	e is heated to a tempera	ature of
113°C?				alle	(2mks)
				asil .	
				58	
			eeko		
(b) Write an	e equation for the	e reaction of a	itom of the ab	pove structure with hyo	lrogen. (1mk)
			12		
		jeji			
		ers			
II. Study the scheme	e below and answ	ver questions	that follow.		
	ast				
Ĥ	e Qu				
Sto	"MISO				
503	Step II SO	3 Step III H;	\$O ₄		
Ga	s if				
<u> </u>			√zm °		
5_	Step W Monodi	nic Sulphur	$L + \mathbf{M}_{\text{-g}} = \mathbf{H}_{2\text{-g}}$		
(a)					
i)	Name				
,	1 vuille				, a
Gas K					(1mk)
Gas <i>M</i>					(1mk)

		(1mk)
Step II		(1mk)
iii) State the conditions	necessary for step II to occur.	(2mks)
contact process.	ow pollution effect of sulphur (IV) or	kide is controlled in (2mks)
(c) <i>Explain</i> the role of sulphur in	16 September 1	(2mks
a) Study the table below and and Formula of hydrocarbon	Wer the questions that follows Boiling points (K)	
C ₂ H ₄	-104	
C ₃ H ₆	-47.7 -62	
1 0	30	
C_5H_{10}	1	
C ₅ H ₁₀ C ₆ H ₁₂	63.9	

reason for your answer.		(2mks)
iv) Give the formula of the seventh member of the abo	ve series.	(1mk)
v) What is the relationship between the boiling poi masses of the hydrocarbons in the table above? Explain		molecular (2mks)
b. Study the flow chart below and answer the questions that	at follow	
Alcohol X Process Y Ethene conc. H ₂ SO ₄ Heat	Compound Z	
i. Write the formula of Alcohol X , Compound Z and nan	ne process Y.	(3mks)
C. Hos Dogs		
ii. Propane and Chlorine react as shown below: CH ₃ CH ₂ CH ₃ — CH ₃ CH ₂ CH ₂ Cl+HCl Name the type of reaction that takes place.		(1mk)
iii State the condition under which this reaction takes	place.	(1mk)