Name:
Index No: \qquad
Candidate's signature \qquad
Date \qquad

Muungano KCSE Trial Exam

232/2
PHYSICS
PAPER 2
July 2017
2 Hours

INSTRUCTIONS:

Write your name and index number in the spaces provided above,
This paper consists of $\boldsymbol{T W O}$ sections: \boldsymbol{A} and \boldsymbol{B}.
Answer $\boldsymbol{A} \boldsymbol{L} \boldsymbol{L}$ the questions in sections \boldsymbol{A} and \boldsymbol{B} in the spaces φ 甲ovided.
All working MUST be clearly shown in the spaces provided in this booklet.
KNEC mathematical tables and non programmable silent calculators may be used.

Physical Constants

Speed of sound in air $=330 \mathrm{~m} / \mathrm{s}$
Refractive index of water $={ }^{4} / 3$

For Examiner's Use Only

Section	Question	Maximum Score	Candidate's Score
A	$1-11$	25	
B	12	12	
	13	12	
	14	11	
	15	12	
	16	16	
	Total Score	$\mathbf{8 0}$	

This paper consists of 11 printed pages
Candidates should check the question paper to ensure that all the pages are printed as indicated and no questions are missing.

SECTION A (25Marks)

Answer all the questions in this section in the spaces provided below each question

1. Figure 1 below shows a negatively charged electroscope.

Figure 1
What will happen to the divergence when a negatively charged rod is brought near the cap of the electroscope?
2. An image of an object in a convex mirror is 4 cm from the mirror, if the mirror has a radius of curvature of 24 cm , find the position of the object
\qquad
\qquad
\qquad
3. The diagram in figure $\mathbf{2}$ showsácertain eye defect

Figure 2
Which lens can be used to correct the defect
4. Figure $\mathbf{3}$ below shows an object \boldsymbol{O} placed in front of a plane mirror. On the same diagram draw rays to show the position of the image I as seen by the eye \boldsymbol{E}.

Figure 3

Turn Over
5. Table 1 shows radiations and their respective frequencies

Type of radiation	Yellow light	Gamma rays	Radio waves	Micro waves
Frequency (Hz)	1×10^{15}	1×10^{22}	1×10^{6}	1×10^{11}

Arrange the radiations in the order of increasing energy.
(1mk)
6. A current of 13 A flows through a heating element of resistance 8.5Ω for 1.5 minutes.

Calculate the quantity of heat supplied.
(3mks)
\qquad
\qquad
\qquad
7. Figure $\mathbf{4}$ shows how displacement varies with time as a wavepasses a fixed point.

Determine the:
I. Amiplitude
(1mk)
II. Velocity of the wave if its wave length is 0.25 m .
8. The figure 5 below shows the displacement of a spot on a cathode ray oscilloscope screen.

Figure 5

The spot appears on the CRO at position \mathbf{A}. When DC voltage is applied to \mathbf{Y}-plates the spot is displaced to position \mathbf{B}. The \mathbf{Y}-gain is set at $20 \mathrm{~V} / \mathrm{cm}$.
(i) State the type of voltage applied.
(ii) Find the voltage applied.
\qquad
\qquad
9. Figure 6 shows an incident ray normal to the ssurface $\boldsymbol{B C}$ of a right-angled glass prism $\boldsymbol{A B C}$. The critical angle of the glass is 42^{0}

Figure 6
Complete the diagram to show the path of the ray.
10. A pin at the bottom of a beaker containing glycerine appears to be 6.8 cm below the surface of glycerine. Determine the height of the column of glycerine in the beaker. (take the refractive index of glycerine as 1.47)
\qquad
\qquad
\qquad
11. The Figure 7 below shows a conductor carrying current placed in the magnetic field of two magnets. Complete the diagram by showing the field pattern and the direction of force \boldsymbol{F} that acts on the conductor.

SECTION B (55Marks)
 Answer all questions in this section

12. (a) (i) Define capacitance of a capacitor
(ii) Figure 8 below shows a pair of parallel plates of capacitor connected to a battery. The upper plate is displaced slightly to the left.

Figure 8
State with a reason the effect of this movement on the capacitance.

iii) The circuitdragram in figure 9 below shows four capacitors connected between two points \boldsymbol{A} and \boldsymbol{B}.

Figure 9

Determine the capacitance across AB.
(b) Figure 10 below shows metal plates \mathbf{X} and \mathbf{Y}. Metal \mathbf{Y} is illustrated by ultra-violet radiation.

Figure 10

(i) State the observation made on the galvanometer
(ii) Explain the observation in (i) above
(2mks)
(iii) A material has a work function of 2.0 eV Cetermine the largest wavelength of incident radiation that can cause photo electrons to be emitted from its surface.

$$
\begin{equation*}
\left(C=3 \times 10^{8} \mathrm{~m} / \mathrm{s}, h=6.63 \times 10^{-34} \mathrm{Js}, \downarrow \mathrm{LeV}=1.6 \times 10^{-19} \mathrm{~J}\right) \tag{3mks}
\end{equation*}
$$

13. a) A radioactive nuclide of atomic number z emits a beta particle and gamma rays. State the atomic number of the geew nuclide.
\qquad
\qquad
b) i)Define half-life of a radioactive material.
ii) Figure 11 shows a graph of the variation of the number of atoms of a certain radioactive material with time.

Figure 11
Determine the half-life of the material
(2mks)
c) The figure $\mathbf{1 2}$ below shows features of adiffusion cloud chamber used for detecting radiations from a radioactive source.

Figure 12
I. Explain how the chamber works when a radioactive particle is introduced at the source.
II. What is the purpose of solid carbon (IV) oxide?
III. When a radiation was released into a diffusion cloud chamber, short thick tracks were observed. State with a reason the type of radiation that was detected. (2mks)
d) Cobalt 60 is a radio isotope that has a half-life of 5.25 years. What fraction of the original atoms in a sample will remain after 21 years?
14. a) Figure $\mathbf{1 3}$ shows two coils \boldsymbol{A} and \boldsymbol{B} placed close to each other. \boldsymbol{A} is connected to a steady D.C. supply and a switch, \boldsymbol{B} is connected to a sensitive galvanometer.

i) What happens to the galvanometer when the switch is closed?
ii) If the D.C source was replaced with an A.C source, what will be the observation?
b) The primary coiRof a transformer has 10000 turns and the secondary coil has 2000 turns.

The primarycoil is connected to a 240 Va.c. Mains supply
i) Determine the secondary voltage
\qquad
\qquad
\qquad
ii) Calculate the efficiency of the transformer given that the current in the primary coil is 0.20 A and in the secondary coil it is 0.8 A
\qquad
\qquad
\qquad
c) Study the figure $\mathbf{1 4}$ shown below.

Figure 14

i) State the name of the machine shown in figure above.
(1mk)
ii) What are the names of the parts labelled \boldsymbol{A} and \boldsymbol{B} ?

B \qquad
iii) What would be the effect of doubling the number of turns of the coil if the speed of rotation remained unchanged?
15. Figure 15 shows the parts of an x-ray tube.

Figure 15
a) Explain why:
i) The cathode is concave shaped
(1mk)
ii.) A high potential difference is applied between the cathode and the anode (1mk)
iii) Most of the tube is surrounded by lead.
(1mk)
iv) The target of X-ray tube is made of metals of high melting point.
(1mk)
b) State type of the x-rays produced as a result of increasing the potential difference between the anode and the cathode
c) Figure16 shows a cell of e.m.f. 2v connected ingeries with a resistor \boldsymbol{R} and a switch \boldsymbol{S}.

Voltmeters V_{1} and V_{2} are connected across the cell and the resistor respectively.

I. State the reading of V_{1} with \mathbf{S} open
II. With \mathbf{S} closed, V_{1} reads 1.6 V . State the reading of V_{2}
III. If a current of 0.05 A flows when \boldsymbol{S} is closed determine the value of \boldsymbol{R}.
d) $A \Omega$ resistor is connected in series to a battery of e.m.f 6 V and negligible Internal resistance. Determine the power dissipated by the resistor.
\qquad
\qquad
\qquad
16. a) Explain the propagation of sound with reference to compressions and rarefactions.
(2mks)
b) In an experiment to measure the speed of sound in air, a starter isbanged at a distance of 150 m away from a wall. The banging was done in such a frequency that causes the echo to coincide with the banging. If 20 bangs were made Within a time of 18.5 seconds.
i) Determine the time taken for the first echo to be heard.
(2mks)
ii) Calculate the speed of sound in air.
(2mks)
\qquad
\qquad
\qquad
iii) What difference would you expect if the experiment was repeated during a very hot day? Explain
(2mks)

