Name: \qquad Index No: \qquad
Candidate's signature \qquad
Date. \qquad

Muungano KCSE Trial Exam

232/3
 PHYSICS (PRACTICAL)

PAPER 3
July 2017
$2^{1 / 2}$ Hours

INSTRUCTIONS:

Write your name and index number in the spaces provided above.
Answer all the questions in the spaces provided in the question paper.
You are supposed to spend the first $\mathbf{1 5}$ minutes of the $21 / 2$ hours allowed for this paper reading the whole paper carefully before commencing your work:
Marks are given for a clear record of the observations actually made their suitability accuracy and the use made of them.
Candidates are advised to record their obseryations as soon as they are made.
KNEC mathematical tables and non programmable silent calculators may be used.
Q1

	$a(i)$	$($ (ij)	(iii)	b	$C(v)$	d	$e(i)$	(ii)	Total
Maximum score	1	1	1	2	6	5	2	2	20
Candidates Score	e								

Q2

	b	d	e	f	$g(i)$	(ii)	$h(i)$	(ii)	Total
Maximum score	1	4	5	2	2	2	2	2	20
Candidates Score									

Grand Total

Candidates should check the question paper to ensure that all the pages are printed as indicated

and no questions are missing

QUESTION 1

PART A

You are provided with the following:

- A clamp, boss and stand, A spiral spring with pointer, A micrometer screw gauge, A vernier caliper, A metre rule, Two wooden blocks, A stop watch, two 50 g masses and two 100 g masses.

Proceed as follows:

(a) (i) Determine the number of turns , N , of the spiral spring

$$
N=\ldots \ldots \ldots \ldots \ldots \ldots .
$$

(ii) Use the vernier caliper to determine the outer diameter, \boldsymbol{D}, of the spiral spring

$$
D=
$$

\qquad $\mathrm{cm}, \boldsymbol{D}=$ \qquad m (1mk)
(iii) Use the micrometer screw gauge to determine, d , the diameter of the wire making the spring.
$d=$ \qquad $\mathrm{mm}, \boldsymbol{d}=$ \qquad
(b) Determine the value of, H , given that: $\mathrm{H}=\frac{\pi P^{2}}{\frac{2}{2}} \mathrm{~N}$
(c) (i) Set up the apparatus ass shown in the diagram

Figure 1
(ii) Suspend the 0.10 kg mass on the lower hook of the spring and give the mass a small vertical displacement so that it oscillates up and down.
(iii) Use the stop watch to measure, the time, \boldsymbol{t}, taken to complete 10 oscillations hence record the periodic time, \boldsymbol{T}, and frequency $\boldsymbol{F}=\mathbf{1 / T}$ for the oscillation.
(iv) Repeat the above procedure for $0.15 \mathrm{~kg}, 0.20 \mathrm{~kg}, 0.25 \mathrm{~kg}$ and 0.30 kg .
(v) Tabulate your results in table below hence complete the table.
(6mks)
Table 1

Mass, $\mathrm{M}(\mathrm{kg})$	$1 / \mathrm{M}\left(\mathrm{kg}^{-1}\right)$	Time, $\mathrm{t}(\mathrm{s})$	Periodic time, $\mathrm{T}(\mathrm{s})$	$\mathrm{F}=1 / \mathrm{T}(\mathrm{Hz})$	$\mathrm{F}^{2}\left(\mathrm{~Hz}^{2}\right)$		
0.10							
0.15							
0.20							
0.25							
0.30				c°			d) Plot a graph of $1 / \mathrm{M}$ against F^{2}
:---							

Question 2
 You are provided with the following

- new dry cells size D
- A cell holder
- A switch
- An ammeter
- A voltmeter
- 6 connecting wires at least three wyith crocodile clips
- Nichrome wire mounted onthé metre rule labeld \boldsymbol{X}
- A micrometer screw gazge (to be shared)

Proceed as follows

a. Connect the circuit as shown in the figure below.

b. Measure the voltage, E of the dry cell before closing the switch

E=. V
c. Adjust the length L of the wire 0.2 m , close the switch S and read the value of current and record in the table below.

Table 2

Length L(m)	0.2	0.3	0.4	0.5	0.6	0.7
Current, I(A)						
$\frac{1}{I}\left(\mathbf{A}^{-1}\right)$						

d. Repeat the procedure in (c) above for the value of lengths given in the table
(4mks)
Calculate the values of $\frac{1}{I}$ and record in the table 2 above.
e. On the grid provided plot a graph of $\frac{1}{I}$ (y axis) against L^{2} (5mks)

f. Determine the gradient of a graph
g. (i) Measure the diameter \boldsymbol{d} of the wire in three points used and find the average diameter.
$\mathrm{d}_{1}=$ $\mathrm{d}_{2}=$ \qquad d_{3}

(1mk)
Average d=
.m
(ii) Determine the cross section area, A of the wire
h. From the equation
$\frac{1}{I}=\frac{k l}{A E}+\frac{Q}{E}: \quad$ determine
i) The value of \boldsymbol{k}

\qquad
\qquad

