SUNSHINE SECONDARY SCHOOL

233/3 CHEMISTRY PAPER 3 PRACTICAL PRE MOCK 1 2017 MARCH 2017 2¹/4HRS

NAME		CLASS	ADM NO
SIGNATURE	.INDEX		DATE

INSTRUCTIONS

- ✤ Answer all the questions on the spaces provided
- ✤ All working must be clearly shown where necessary
- Calculations and mathematical tables may be used

FOR EXAMINERS USE ONLY

QUESTION	MAXIMUM SCORE	CANDIDATES SCORE
1	11	
2	14	
3	15	
TOTAL	40	

You are provided with:
Solution M 0.2M hydrochloric acid,
Solution F containing 15.3g per litre of basic compound G₂X.H₂O.
You are required to determine the relative atomic mass of G.

PRECEDURE:

Place solution M in a burette ,pipette 25cm³ of solution F into a 250cm³ conical flask. Add two drops of methyl orange indicator and titrate. Record your results in the table below. Repeat the procedure two more times and complete table I.

Table I

			Ι	II	III	
Final bu	irette r	eading				
Initial b	urette	reading				
Volume	of sol	ution M used (cm ³)				
				(4mks)	
a) What	t is the	average volume of solution M.?		(1mk)	
		<u> </u>		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
b) (Given	that one mole of F reacts with 2moles of M. Calcul	ate the:			
i	i) Nurr	where $G_2 X = 10 H_2 O$ in the basic compound $G_2 X = 10 H_2 O$ in the basi	he volu	me of solu	tion	
Fused	.) 1 (411			(2mks)	
i usea.				(21111(3)	
•••••	• • • • • • • • • •		••••	• • • • • • • • • • • • • • • •	•••••	• • • • • • •
			••••	• • • • • • • • • • • • • • • •	•••••	• • • • • •
•••••	• • • • • • • • • •		••••			• • • • • • •
••••••	•••••		••••	• • • • • • • • • • • • • • • • • • • •	()	
1	11)	Concentration of solution F in moles per litre.			(2r	nks)
•••••	• • • • • • • • •		•••••		•••••	• • • • • •
			••••		•••••	• • • • • • •
•••••			•••••		•••••	• • • • • •
			•••••			
i	iii)	Relative formula mass of the basic compound, G ₂ 2	X.10H ₂	0.	(1r	nk)

iv) Relative atomic mass of G (Relative formula Mass of X=60, atomic mass of H=1.0, O=16.0). (1mk)

2 You are provided with:

- 1 1.89g of solid P, solid P is adiabatic acid H_2X .
- 2 0.5M Solution of the dibasic acid , H_2X , Solution V.
- 3 Sodium hydroxide, Solution K.

You are required to determine:

- a) i) the molar heat of solid P.
 - ii) the heat of reaction of one mole of the dibasic acid with sodium hydroxide.
- b) Calculate the heat of reaction of solid H_2X with aqueous sodium hydroxide.

PROCEDURE I.

Place 30cm³ of distilled water into a 100ml beaker. Measure the initial temperature of the water and record it in the table II below. Add all the solid P at once; stir the mixture carefully with the thermometer until all the solid dissolves. Measure the final temperature reached and records it in the table II

Table II

Final temperature (⁰ c)	
Initial temperature	(°c)	
	I	(2mks)
a) Determine	the change in temperature ΔT_1	(1 mk)
b) Calculate th	ne:	
i) Heat change whe	en H ₂ X dissolves in water, (Assuming the	e heat capacity of the solution is
$4.2 Jg^{-1} K^{-1}$ and dense	sity is 1g/cm ³)	(2mks)

ii) Number of moles of the acid that were used. (Relative formula mass of H_2X is 126) (1mk) iii) Molar heat of solution ΔH_1 solution of the acid H_2X . (1mk)

PROCEDURE II.

Place 30cm³ of solution V into a 100cm³ beaker. Measure the initial temperature and record it in table III below. Measure 30cm³ of sodium hydroxide, solution K. Add all of the 30cm³ of t of solution K at once to V in the beaker. Stir the mixture with the thermometer. Measure the final temperature reached and record it in table III.

<u>Table III.</u>

Final	tempera	ture (° _C)		
Initial	temper	ature (° _C)		
				(1 ¹ ⁄ ₂ mks)
a)	Deteri	nine the change in temper	rature, ΔT_2 .	(½ mk)
b)	 Deteri	nine the:		
	i)	Heat change for the read	ction (Assume the heat capacity of the solu	tion is
		$4.2 Jg^{-1}k^{-1}$ and density is	1g/cm ³	(2mks)
	::)	Number of males of the		$(1 \dots k)$
	11)	Number of moles of the	acid used (H_2X).	(1mk)
		••••••		••

iii) Heat of reaction , ΔH_2 of one mole of the acid H₂X with sodium hydroxide (1mk) d) Given that, ΔH_1 is the heat for reaction $H_2X_{(s)}$ water $2H^+_{(aq)} + X^{2-}_{(aq)}$ Δ H₂ is the heat for the reaction H⁺_(aq)+OH⁻_(aq) \longrightarrow H₂O₍₁₎ Calculate ΔH_3 for the reaction $H_2X_{(s)} + 2OH^{-}_{(aq)} \rightarrow 2H_2O_{(l)} + X^{2-}_{(aq)}(2mks)$

QUESTION 3A

a)You are provided with solid Q. Carry out the test indicated below and record your observations and deductions in the table below.

i)Place a spatula full of Q in a boiling tube. Add about 10cm^3 of distilled water and shake. Divide the resultant mixture into 4 portions.

Observation	Deductions	
(1mk)		(1mk)

b)To the first portion add Barium nitrate solution followed by dilute nitric acid.

Observation		Deduction	
	(2mks)		(1mk)

c)To the second portion add 2-3 drops of sodium hydroxide till in excess.

Observation	Deduction
(2mks)	(1mk)

d)To the third portion add 2-3 drops of ammonia solutions till in excess.

Observation	Deduction
(2mks)	(1mk)

e)To the 4^{th} portion add Pb (NO₃)₂ solution

Observation	Deduction
	(1mk)
(1mk)	

QUESTION 3B

You are provided with liquid X. You are required to carry the test below.

a)Place about 1cm³ of substance X in a test tube. Add a small piece of sodium carbonate solid.

Observation	Deduction
(1mk)	(1mk)

b)To about 3cm3 of X in a boiling tube, add acidified potassium chromate (vi) and warm.

Observation	Deduction
(1mk)	(1mk)

c)To about 3cm3 of X add acidified potassium manganate (vii)

Observation	Deduction
(1ml	x) (1mk)

233/3 CHEMISTRY PRACTICAL PAPER 3 MARCH 2017

CONFIDENTIAL

PRE MOCK

Kenya Certificate of Secondary Education

- 1. About 50cm^3 of solution V
- 2. About 50cm^3 of solution K
- 3. 1.89g of solid P oxalic acid accurately weighed and placed in a stopped container.
- 4. Thermometer
- 5. 5 dry test tubes in a test tube rack
- 6. Spatula
- 7. Bunsen burner
- 8. About 120cm³ of solution M
- 9. About 90cm^3 of solution F
- 10. Liquid X-ethanol
- 11. Solid Q 1g of solid zinc sulphate
- 12. Blue and red litmus papers.
- 13. A boiling tube.
- 14. Glass rod

Access to;

- a) Bunsen burner
- b) 2M sodium hydroxide with a dropper
- c) 2M Ammonium hydroxide
- d) Barium nitrate solution
- e) Lead nitrate solution
- f) Dilute nitric v acid
- g) Methyl orange with a dropper.
- h) Phenolphthalein indicator in a bottle dropper
- i) About 15cm3 of liquid X
- j) Acidified potassium dichromate (VI) with a dropper.
- k) Acidified potassium mangate (vii)
- 1. Solution V is a prepared by dissolving 63g of oxalic acid to make one litre of solution.
- 2. Solution K is prepared by dissolving 16g of sodium hydroxide pellets to make one litre of solution.
- 3. Solution M is prepared by dissolving 17cm³ of concentrated hydrochloric acid to make one litre of solution.
- 4. Solution F is prepared by dissolving 15.3g of hydrated sodium hydrogen carbonate to make one litre of solution.