NAME	ADM NO
CLASS S	GIGNATURE
PHYSICS 232/2	
THEORY)	
MARCH 2017	
TIME 2 HOURS	

SUNSHINE SECONDARY SCHOOL PRE-MOCK (I)

PHYSICS PAPER 2

INSTRUCTIONS TO CANDIDATES

Write your name, class and admission number in the spaces provided above.

This paper consists of two sections A (25 MARKS) and B (55 MARKS)

Working must be clearly shown

Non-programmable silent calculator may be used.

Take Acceleration due gravity, $g = 10Nkg^{-1}$

SPEED OF LIGHT IN VACCUM, C = 3.0 X 10⁸ m/s

FOR EXAMINER'S USE ONLY

SECTION	QUESTIONS	MARKS	CANDIDATES'CSORE
A	1 -8	25	
В	9	08	
	10	08	
	11	06	
	12	11	
	13	06	
	14	10	
	15	06	
	TOTAL		

SECTION A (25 MARKS)

1.	a) State the law of electrostatic charges.	(1mk)	
	b) State two uses of a charged gold leaf electroscope.	(2mks)	
	c) A conductor is slowly brought near the cap of a positively charged elect leaf collapses and then diverges. State the charge on the conductor.	roscope. The (1mk)	
2.	A current of 1.5A flows in a circuit. Determine the quantity of charge that in 5 minutes.	(1mk)	
3.	Explain how polarization reduces current in a simple cell.	(1mk)	
4.	a) Define focal plane as used in concave mirrors.	(1mk)	
	b) Complete the ray diagram below.	(2mks)	
	F		

5.	Determine the number of images formed when an object is placed between two plants inclined at 60°.	(2mks)
6.	State one application of mirrors inclined at an angle.	(1mk)
7.	a) Differentiate between magnet and magnetism.	(2mks)
	b) Draw the magnetic field pattern of the arrangement shown below.	(1mk)
	Soft iron ring.	
	c) Draw the appearance of the wave after passing an obstacle.	(1mk)

d) Give one use of this property of the soft iron ring.	(1mk)
. a) State two characteristics of the image formed by concave mirror who placed between the focal point (principal focus) and the pole of the min	eror. (2mks)
b) A vertical object is placed in front of a convex lens of focal length 5 i) Determine	cm.
I. The image distance	(3mks)
II. the magnification	(2mks)
ii) State one characteristics of the image.	(1mk)

SECTION B (55 MARKS)

Attempt all the questions in this section.

9.		between X and Y have a potential difference of V volts. Q coulombs between X and Y for t seconds. Determine:	etermine:			
	i)	the electrical energy transferred between the two points in terms of				
	ii)	The power transformed in terms of Q and t.	(1mk)			
	iii)	show that the power transformed is given by P = IV				
4A cai	i be use	g in a house has 20 lamps each rated 60W, 240V. Determine whether d in the circuit when all the lamps are put one.	(4mks)			
		e two conditions necessary for total internal reflection to take place.	(2mks)			

b) The diagram below shows a ray of light incident perpendicularly on a glass prism of refraction index 1.5. Determine the angle of deviation D. (3mks)

c) Draw a diagram to show how a ray of light can be made to turn through 90° using a glass prism. (1mk)

d) i) When light is reflected by a plane mirror, the angle of incidence is equal to the angle of reflection. State the other law of reflection on the mirror. (1mk)

11. a) The diagram below shows an electromagnetic spectrum.

Radio waves	A	Infr	a – red	Visible light	В	x-rays	C	
.,		1	C A				/ 1	1.

	1mk)
,	1mk)
,	1mk)
of th	 he
	 he

12.	a) State two factors that determine the magnitude of force between charged bodies. (2mks)				

b) Figure below shows a positive charge placed near a negatively charge red. Draw the electric field lines. (1mk)

c) Figure below shows capacitors A and B connected in series with a battery of e.m.f 6v.

Deterr	nine the	
i)	effective capacitance of the current	(3mks)
ii)	Quantity of charge in capacitor A.	(2mks)
iii)	Voltage across capacitor B.	
e the ef pacitanc	fect of decreasing the distance between the plates of a parallel plate	capacitor on (1mk)
 	lain how keepers are used to effectively retain magnetic properties time.	of magnets for a

b) Use the diagram below to answer the questions that follow.

i)	Identify the method of magnetization above.	(1mk)
ii)	In the same diagram indicate the direction of the flow of electric current	t. (1mk)
iii)	State the polarities:	
,	A	- (1mk)
	В	(1mk)
iv)	Give a reason for your answer in (iii) above.	(1mk)
	ferentiate between progressive waves and stationary (standing) waves.	(2mks)

b) The figure below shows this displacement time graph for a wave.

i)	Determine the frequency of the waveform shown.	(2mks)

- ii) On the same diagram draw a waveform of a wave whose frequency is twice and whose amplitude is half the one shown in the diagram. (1mk)
- c) A fishing boat uses ultrasonic sound waves of frequency 8×10^{14} Hz to detect fish directly below it. Two echoes are received, one after 0.1s and the other after 0.12S. If the first echo was from a shoal of fish and the second from sea-bed which is 96m below the boat. Calculate:

I.	Speed of sound	(2mks)
II.	Distance between the shoal of fish and the boat.	(1mk)

III.	Wavelength of sound waves.	(2mks)
15. a) Sta	ate ohm's law	(1mk)
b) Th	e cell in the figure below has an e.m.f of 2.0V and negligible internal resi	stance.
	1052 552 2052	
Deter	rmine the:	
i)	total resistance in the circuit	(2mks)
ii)	current in the circuit	(1mk)

iii)	reading of the voltmeter	(2mks)

THIS IS THE LAST PRINTED PAGE.