|                |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                          |                                                                                                                 | Chemistry 233/1,2&3                            |
|----------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|                | SUKEMO<br>233/1<br>CHEMIS'<br>Paper 1<br>THEORY<br>July 2017 | ) JOINT E<br>TRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EXAMINATION                                                                                              |                                                                                                                 |                                                |
| 1              | 2 Hours                                                      | ean be clas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sified as acids bases (                                                                                  | or neutral. The table below shows solutions and their pH va                                                     | luec                                           |
| 1.             | Solutions                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | silled as acids bases o                                                                                  | in neutral. The table below shows solutions and then priva                                                      | nues.                                          |
|                |                                                              | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L                                                                                                        | <u>pH values</u>                                                                                                |                                                |
|                |                                                              | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                          | 7.0                                                                                                             |                                                |
|                |                                                              | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                          | 14.0                                                                                                            |                                                |
| 2.             | i) Select<br>ii) Identi<br>Consider the                      | any pair the following of the following | hat would react to for<br>utions that would reac<br>ng reactions for a fuel                              | m a solution of pH 7<br>et with Aluminium hydroxide. Explain.<br>cell                                           | (1mk)<br>(2mks)                                |
| a)             | Write the r                                                  | reaction at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the positive terminal                                                                                    |                                                                                                                 | (1mk)                                          |
| b)             | Discuss the                                                  | e advantag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e of a fuel cell pound                                                                                   | vehicle over an internal combustion powered vehicle by co                                                       | omparing products                              |
| 3              | formed<br>The flow                                           | chart belov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | w shows some proces                                                                                      | ses involved in the extraction of Lead metal starting with i                                                    | (2mks)<br>its ore: Galena                      |
| 5.             | The now                                                      | enart belo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | w shows some proces                                                                                      |                                                                                                                 | us ore, Galena.                                |
|                | Y —                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Unit I                                                                                                   | SO <sub>2(g)</sub><br>SO <sub>2(g)</sub><br>SO <sub>2(g)</sub><br>Coke of CO <sub>2(g)</sub>                    |                                                |
|                |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Roasting                                                                                                 |                                                                                                                 |                                                |
|                |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Roasting                                                                                                 |                                                                                                                 | Pb <sub>(l)</sub>                              |
|                | Hot air —                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chamber                                                                                                  | i Siti wa                                                                                                       |                                                |
| 4.             | (a). Explai<br>(b). Write<br>(c). State of<br>In the set-u   | in what tak<br>a chemica<br>one use of<br>1p in figure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | kes place in roasting fill<br>l equation for reaction<br>Lead other than in ma<br>e was used to separate | urnace.<br>n taking place in unit II.<br>aking lead pipes.<br>a mixture of sulphur (IV) oxide and ammonia gases | (1mk)<br>(1mk)<br>(1mk)                        |
|                |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                          |                                                                                                                 |                                                |
|                |                                                              | SO <sub>2</sub> /N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VH <sub>3</sub> gases                                                                                    |                                                                                                                 | → T                                            |
|                |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                          | Care Contractor                                                                                                 |                                                |
|                |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | or the                                                                                                   | Anhydrous calcium chloride                                                                                      |                                                |
| a)<br>b)<br>5. | Name gas<br>What is the<br>A flame te<br>shows the           | T.<br>e intended<br>st is carrie<br>apparatus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | function of anhydrou<br>d out on three metal s<br>used                                                   | s calcium chloride?<br>olutions of Sodium chloride, Potassium chloride and calciu                               | (1mark)<br>(1mark)<br>um chloride. The diagram |
|                |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                          | <u>^</u>                                                                                                        |                                                |
|                |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                          | Bunsen flame                                                                                                    |                                                |
|                | platinum v                                                   | vire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                          | $\setminus r$                                                                                                   |                                                |
|                | with loo                                                     | р                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\rightarrow$                                                                                            |                                                                                                                 |                                                |
|                | n                                                            | netal com<br>being te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | npound Lested                                                                                            |                                                                                                                 |                                                |
| a)             | i) Sugge<br>ii) Why i                                        | st two reas<br>s a lumino                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sons why platinum is<br>bus Bunsen flame not                                                             | a suitable metal to use as the wire in this test.<br>suitable for carrying out a flame test?                    | (2mks)<br>(1mk)                                |





Page | 285



(2mks)

(2mks)

(2mks)

(1mk)

(1mk)

 $(1\frac{1}{2}mks)$ 

## SUKEMO JOINT EXAMINATION 233/2 CHEMISTRY PAPER 2 JULY/AUGUST 2017 **TIME: 2 HOURS**

1. a) Study the information given below and answer the questions that follow.

| Element | Atomic radius (nm) | Ionic radius (nm) | Formula of oxide | Melting point of oxide ('C) |
|---------|--------------------|-------------------|------------------|-----------------------------|
| Р       | 0.364              | 0.421             | A <sub>2</sub> O | -119                        |
| Q       | 0.830              | 0.711             | BO <sub>2</sub>  | 837                         |
| R       | 0.592              | 0.485             | $E_2O_3$         | 1466                        |
| S       | 0.381              | 0.446             | $G_2O_5$         | 242                         |
| Т       | 0.762              | 0.676             | JO               | 1054                        |

Which elements are non-metals? Give a reason. i)

ii) Explain why the melting point of the oxide of R is higher than that of the oxide of S.

iii) Give two elements that would react vigorously with each other. Explain your answer.

b) Study the information in the table below and answer the questions that follow (The letters do not represent the actual symbols of the elements)  $\mathcal{A}$ 

|         |                          |                                | O`           |
|---------|--------------------------|--------------------------------|--------------|
|         |                          | Ionization Energy (I.E) in kJ/ | Mole 6       |
| Element | Electronic configuration | 1 <sup>st</sup> I.E            | $2^{nd}$ $E$ |
| Α       | 2.2                      | 900                            | 4800         |
| В       | 2.8.2                    | 736                            | 1450         |
| С       | 2.8.8.2                  | 590                            | 1150         |

What chemical family do the elements A, B and C belong? I.

**II.** What is meant by the term ionization energy?

- III. The 2<sup>nd</sup> ionization energy is higher than the 1<sup>st</sup> ionization energy of each. Explain (1mk) IV. Aluminium chloride and sodium chloride are both chlorides of period 3 elements. Use this information to explain the
- following observations:
- (a) A solution of Aluminium chloride in water turns blue litmus paper red while that of sodium chloride does not.
- (b) The melting point of sodium chloride (801°C) is higher than that of Aluminium chloride (180°C).
- (1½mks) The scheme below shows a series of reactions starting with ethanol. Study it and answer the questions that follow 2.



| 10 10                         |                                                                                              | Che                                                                                                             | mistry 233/1,2&  |
|-------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------|
| (a)                           | i) Name the type of reaction in                                                              | n step 1.                                                                                                       | (1 mk)           |
|                               | (i) Give the reagent and condit<br>Reagent                                                   | ion necessary for step 1 to take place.                                                                         | (2 mks)          |
| (b)                           | Write the equation for the reacti                                                            | on that takes places in step I                                                                                  | (lmk)            |
| (c)                           | Name product V and give the ec                                                               | mation responsible for its formation                                                                            | (2  mks)         |
| (d)                           | Give the IUPAC name and struc                                                                | tural formula of compound X                                                                                     | (2  mks)         |
| (e)                           | State the type of reaction involv                                                            | ed in the formation of compound K.                                                                              | (1 mk)           |
| (f)                           | Give the reagent necessary for s                                                             | tep W to take place.                                                                                            | (1 mk)           |
| (g)                           | If the relative molecular mass of                                                            | compound K is 44800, determine the value of <i>n</i> .                                                          | (2 mks)          |
| 3.                            | Aqueous copper (II) sulphate wa                                                              | as electrolyzed using the set-up represented by the diagram below.                                              |                  |
|                               | Gas X                                                                                        |                                                                                                                 |                  |
|                               |                                                                                              | Aqueous copper (II) sulphate                                                                                    |                  |
|                               |                                                                                              | Platinum electrodes                                                                                             |                  |
| Ca                            | monting                                                                                      | Ammetar                                                                                                         |                  |
| wi                            | re                                                                                           | Q Annuell                                                                                                       |                  |
|                               |                                                                                              | Dry cens                                                                                                        |                  |
| ~                             | i) Nama tha ang V                                                                            | AND                                                                         | (Lanla)          |
| a)                            | <ol> <li>Name the gas A.</li> <li>Write an ionic equation for</li> </ol>                     | the reaction that produces gas X                                                                                | (Imk)            |
| 6)                            | What happens to the pH of the e                                                              | lectrolyte during electrolysis? Explain your answer.                                                            | (2mks)           |
| c)                            | If in the above set-up, copper el-                                                           | ectrodes were used instead of platinum electrodes.                                                              | (2000)           |
| 1                             | i) Write the electrode half- eq                                                              | uations for the reactions at the anode and the cathode.                                                         | (2mks)           |
|                               | ii) What happens to the color of                                                             | of the electrolyte during electrolysis Explain your answer.                                                     | (2mks)           |
| d)                            | During the electrolysis of coppe                                                             | r (II) sulphate solution using copper electrodes, a current of 0.2A was passed                                  | through the cell |
|                               | for 5 hours.                                                                                 | in the second |                  |
|                               | <ol> <li>What is the observation magine</li> <li>Determine the observation magine</li> </ol> | de on the anode electrode $\mathcal{C}$                                                                         | (Imk)            |
|                               | 96 500C)                                                                                     | iss of the cathode which occurred as a result of the electrolysis process. (Cu                                  | -04, 1r -        |
| 4.                            | a) In an experiment for the ma                                                               | nufacture of ammonia from the Haber process. Nitrogen is obtained from lig                                      | uid air by       |
|                               | fractional distillation while<br>atoms.<br>The equations are as shown                        | hydrogen is obtained from Napha which is a mixture of hydrocarbons contained below:                             | ning 5-9 Carbon  |
|                               | Nov + 3H> 2NH                                                                                |                                                                                                                 |                  |
|                               |                                                                                              | 2<br>1 +3: ΔH = -92 K/MOI                                                                                       |                  |
|                               | $C_6H_{14(g)} \div 6H_{2(g)} \longrightarrow 6CO_{(g)}$                                      | 13H <sub>2(g)</sub>                                                                                             |                  |
|                               | Use the above information to an                                                              | swer the questions that follow.                                                                                 |                  |
| (1)                           | Why is it necessary to purify the                                                            | gases used in the Haber process? Name one impurity present in these gases                                       | other than       |
| 111                           | La Haber process finely divided                                                              | our.                                                                                                            | (2  mks)         |
| iii)                          | Write the equation for the labor                                                             | atory preparation of ammonia.                                                                                   | (1  mk)          |
| iv)                           | With reasons state the operating                                                             | conditions of the Haber industries.                                                                             | (2 mks)          |
| b)                            | One uses of ammonia is in the n                                                              | nanufacture of nitric (V) acid through catalytic oxidation.                                                     |                  |
| <i>v</i> ,                    | Name the catalyst used.                                                                      |                                                                                                                 | (1 mk)           |
| (i)                           | Write an equation for the cataly                                                             | tic oxidation of ammonia.                                                                                       | (1 mk)           |
| (i)<br>(ii)                   |                                                                                              | process is about 60% pure. State how this purity could be increased.                                            | (1  mk)          |
| (i)<br>(ii)<br>(iii)<br>(iii) | ) Nitric (V) acid obtained in this p                                                         | other than the manufacture of ammonium situate                                                                  | (1 mile)         |

The flow chart below shows a flow chart that outlines some of the processes involved in the extraction of copper from copper pyrite. Study it and answer the questions that follow.



(a) Write the equations for the reactions that take place in the:
 (i) 1<sup>st</sup> roasting furnace

(2 mks)

(1 mk)

(2 mks)

( 1/2 mk)

(1/2 mk)

- (i) 1<sup>st</sup> roasting fu
   (ii) Chamber N
- (b) (i) Write the formula of the cation present ion the slag M.
- (ii) What name is given to the reaction that takes place in chamber N? Give a reason for your answer.
   (c) (i) Name the catalyst Y.
  - (ii) State one commercial use of sulphuric (VI) acid.
- (d) (i) The copper obtained from chamber N is not pure. Draw a labeled diagram to show the set-up you would use to refine the copper by electrolysis. (2 mks)
  - (ii) Given that the mass of copper obtained from the above extraction was 210 kg, determine the percentage purity of the ore (copper pyrites) if 810 kg of it was fed to the 1<sup>st</sup> roasting furnace. (Cu = 63.5, Fe = 56.0, S = 32.0)
- The table below shows the volumes of nitrogen (IV) oxide gas produced when 4M nitric (V) acid were reacted with 0.635g of copper at room temperature.

| Time (seconds) | Volume of Nitrogen (IV) oxide gas (cm <sup>3</sup> ) |
|----------------|------------------------------------------------------|
| 5              | 60                                                   |
| 15             | 160                                                  |
| 25             | 240                                                  |
| 35             | 320                                                  |
| 45             | 380                                                  |
| 55             | 430                                                  |
| 65             | 470                                                  |
| 755            | 490                                                  |
| 85             | 500                                                  |
| 95             | 500                                                  |

a) On the grid provided below, plot a graph of the volume of the gas produced against time. (3 mks)
a) Using the graph, determine the volume of nitrogen (IV) oxide after 30 seconds. (1 mk)
b) On the grid, sketch a graph for the volume of gas against time if the experiment was repeated at 15°C. (1 mk)

- c) Use the graph to determine the rate of reaction at the 65<sup>th</sup> second.
- d) Give a reason why hydrochloric acid cannot be used instead of nitric (V) acid.
- e) Explain how the rate of the reaction between copper and nitric acid would be affected if the temperature of the reaction mixture was raised.
   (2 mks)
- (2
   (3) What is a fuel?
   (1) Calculate the heating value of propane, C<sub>3</sub>H<sub>8</sub>, given that its molar enthalpy of combustion is 2,200 kJ mol<sup>-1</sup>.
  - (C=12, H=1)i) Define molar enthalpy of combustion.

b) i) Define molar enthalpy of combustion. (1 mk)
 ii) Use the information provided by the thermochemical equations below to calculate the molar enthalpy of combustion of ethyne. (3 mks)

 $\begin{array}{ccc} C(s) + O_2(g) & \rightarrow & CO_2(g) & \Delta H = -394 \text{ kJ mol}^{-1} \\ H_2(g) + \frac{1}{2}O_2(g) & \rightarrow & H_2O(g) & \Delta H = -286 \text{ kJ mol}^{-1} \\ 2C(s) + H_2(g) & \rightarrow & C_2H_2(g) & \Delta H = +226 \text{ kJ mol}^{-1} \end{array}$ (c) Study the data given below and answer the questions that follow.

(2 mks)

(1 mk)

(1 mk)

(2 mks)

| Substance/ion         | Enthalpy change                                  |   |
|-----------------------|--------------------------------------------------|---|
| CaCl <sub>2</sub> (s) | Lattice energy = $-2,237$ kJ mol <sup>-1</sup>   |   |
| $Ca^{2+}(g)$          | Hydration energy = $-1,650$ kJ mol <sup>-1</sup> |   |
| Cl'(g)                | Hydration energy = $-364 \text{ kJ mol}^{-1}$    |   |
| · · · · · · · ·       |                                                  | · |

to the revision past pages visit. www.teekcsepastpages.com

(i) Determine the molar enthalpy of solution of calcium chloride in water.

(2 mks) (3 mks)

(ii) Draw an energy level diagram for the dissolution of calcium chloride in water.

#### SUKEMO MOCK KCSE EXAMINATION - JULY/AUGUST, 2017 KCSE CHEMISTRY PRACTICAL - PAPER 233/3 CONFIDENTIAL INSTRUCTIONS

## Instructions to Schools:

The information contained in this paper is to enable the head of the school and the teacher in charge of Chemistry to make adequate preparation for the Chemistry Practical Examination.

NO ONE ELSE should have access to this paper or acquire knowledge of its content. Great care MUST be taken to ensure that the information herein does NOT reach the candidates either directly or indirectly. The teacher in charge of Chemistry should NOT perform any of the experiments in the SAME room as the candidates nor make the results of the experiment available to the candidates of give any information related to the experiments to the candidates. Doing so will constitute an examination irregularity which is punishable.

In addition to the fittings and apparatus found in a Chemistry laboratory, EACH candidate will require:

- 1. One Burette, 0-50ml.
- 2. One 25ml Pipette.
- Three 250ml Conical Flask 3.
- 4. One Volumetric Flask.
- 5. One complete Retort Stand
- 6. One White Tile
- 7. One Pipette Filler
- 8. One Test-tube Rack
- 9. Six Test-tubes
- 10. Two Boiling tubes
- 11. Filter paper \*2
- 12. Filter funnel \*1
- 13. Measuring cylinder 100ml.\*1
- 14. Measuring cylinder 10ml. \*1
- 15. Test tube rack\*1 with Test tubes \*6
- 16. Wash bottle filled with distilled water
- 17. About 0.5g of Solid G supplied in a stoppered container.
- 18. One metallic spatula.
- 19. About 1g of solid sodium hydrogen carbonate.

# ACCESS TO

- 1. Source of heat.
- Persvisit. www.treekcsepestpapers.com Acidified Potassium Manganite (VII) supplied into a dropper. 2.
- Universal indicator 3.
- 4. PH chart
- 5. Pure ethanol supplied with a dropper
- 2M Hydrochloric acid 6.
- 7. 2M Acidified Barium chloride
- 8. 2M Sodium hydroxide solution ⊘
- 2M Ammonia solution 9.
- 10. 2M Nitric acid solution equip for use in question 2.

## NOTES

- Acidified Potassium Manganate (VII) is prepared by dissolving 3.16g of solid Potassium Manganate (VII) in about 600cm<sup>3</sup> of 1. 2M Sulphuric (VI) acid and adding distilled water to make a litre of solution.
- Solid G is pure oxalic acid. 2.
  - I. a) Metal FA1 is 0.3g magnesium granules.
- b) Solution FA2 is a 1.0M Hydrochloric acid solution.
- Solution FA3 is a 0.0984M sodium hydroxide solution. c)
- Solid FA5 is 2.0g Potassium chlorate, KClO3 crystals. d)
- On the day of the Practical Examination, the teacher in charge of Chemistry should perform the experiment as per the IL. procedures given in the question-paper and complete Table 1 and Table 2 for EACH practical session.
- Solution CB35 which contains two cations and one anion i.e. Al<sub>2</sub>(SO)<sub>4</sub> + CuSO<sub>4</sub> each being 0.1M in molecular weight, . mixed and top up to a litre of distilled water in a stoppered boiling tube.
- About 25cm<sup>3</sup> 2M Sodium hydroxide solution

# SUKEMO JOINT MOCK KCSE EXAMINATION

## 233/3 Chemistry (Practical) July/August 2017

## 2 ¼ Hours

- 1. You are provided with:
- i) 0.3g of metal FA1.
- ii) 100cm<sup>3</sup> of a **1.0M** hydrochloric acid solution labelled as solution **FA2**.
- iii) 120cm<sup>3</sup> of a **0.0984M** sodium hydroxide solution, labelled as solution **FA3**.
- iv) Screened methyl orange indicator solution.
   You are required to determine the Relative Atomic Mass of metal FA1.
   <u>Procedure:</u>
- a) Using a burette, measure 50.00cm<sup>3</sup> of solution **FA2** into a clean 250ml beaker.
- b) Add the WHOLE AMOUNT of BA1 provided into the beaker containing 50.00cm<sup>3</sup> of solution **FA2** and stir well with a glass rod until ALL the solid metal reacts completely.
- c) Transfer the mixture left in the beaker after the reaction into a 250ml volumetric flask. Rinse the beaker as well as the glass rod with distilled water and transfer ALL the rinsings into the volumetric flask. Make up the volume of the solution in the volumetric flask up to the calibration mark with distilled water, cover the flask with a stopper, shake well and label as solution **FA4**.
- d) Fill a clean burette with solution FA4.
- e) Pipette 25.0cm<sup>3</sup> of solution **FA3** into a 250ml conical flask, add 3 drops of screened methyl orange indicator solution and titrate against solution **FA4** from the burette. A change in colour of the mixture from green to pink marks the end point of the titration. Record your results in Table 1.
- f) Repeat the titration TWO more times in order to complete Table 1.

| Table 1                                             | etu    |   | (5marks) |
|-----------------------------------------------------|--------|---|----------|
| Titration                                           | 1410   | 2 | 3        |
| Final burette reading, cm <sup>3</sup>              | NN.    |   |          |
| Initial burette reading, cm <sup>3</sup>            | h      |   |          |
| Volume of solution <b>FA4</b> used, cm <sup>3</sup> | . dili |   |          |

Average volume of solution **FA4** used =  $cm^3$ .

- g) <u>Calculations:</u>
- i) Calculate the number of moles of HCl in 50.0 cm<sup>3</sup> of solution FA2. (1mark)
  ii) Determine the number of moles of NaOH in 25.0 cm<sup>3</sup> of solution FA3. (1mark)
  iii) Determine the number of moles of HCl in the average volume of solution FA4 used in the titration. (1mark)
  iv) Calculate the moles of HCl left unreacted after the reaction between metal FA1 and solution FA2. (1mark)
  v) Determine the moles of HCl that reacted with metal FA1. (1mark)
  vi) Given that metal FA1 forms a divalent cation, determine the moles of metal FA1 that reacted with hydrochloric acid.
- vii) Determine the Relative Atomic Mass of metal FA1.
- 1.(b) You are provided with:
- i) 2.00g of solid FA5.
- ii) a thermometer.
- iii) distilled water.
- iv) a boiling tube.
- v) a hot water-bath.

You are required to determine the temperatures at which solutions of known concentrations of compound **FA5** became saturated and then plot a solubility curve.

Procedure:

- a) Transfer the whole amount of solid FA5 supplied to you into a clean dry boiling tube.
- b) Using a burette, add 5.00cm<sup>3</sup> of distilled water into the boiling tube with solid **FA5**.
- c) Put the boiling tube into a beaker of hot water bath and warm the boiling tube, whilst continuously stirring the content with a thermometer, until the crystals of FA5 just dissolve/disappear. (DO NOT BREAK THE THERMOMETER)

(1mark)

(1mark)

# Arrangement:



20

- d) Remove the boiling tube from the hot water bath and allow the content to cool slowly while stirring with the thermometer. Note the temperature at which the crystals FIRST form/reappear and record this temperature in Table 2.
- e) Add a further 2.00cm<sup>3</sup> of distilled water from the burette into the boiling tube containing the mixture and repeat steps (c) and (d) above. Continue this way until the volume of water added to the boiling tube is 5.00cm
- f) Complete Table 2 by calculating the solubility of compound **FA5** in water at the different temperatures.

| Table 2:                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | XCS                                                                                                                                                                                                                                                                                   |                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Total volume of added (cm <sup>3</sup> )                                                                                                                                                                                                                                 | vater Temperature at which crys<br>appear(°C)                                                                                                                                                                                                                                                                                                  | tals first                                                                                                       | Solubility of compound FA5 in water (g/100g                                                                                                                                                                                                                                           | of water)                                                                                          |
| 5.00                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | nn n                                                                                                                                                                                                                                                                                  |                                                                                                    |
| 7.00                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                | , iš                                                                                                             |                                                                                                                                                                                                                                                                                       |                                                                                                    |
| 9.00                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                | J/S                                                                                                              |                                                                                                                                                                                                                                                                                       |                                                                                                    |
| 11.00                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                | also                                                                                                             |                                                                                                                                                                                                                                                                                       |                                                                                                    |
| 13.00                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                              | <sup>x</sup> <sup>2</sup>                                                                                        |                                                                                                                                                                                                                                                                                       |                                                                                                    |
| 15.00                                                                                                                                                                                                                                                                    | ~~~?                                                                                                                                                                                                                                                                                                                                           |                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                    |
| <ul> <li>g) On the grid prov</li> <li>i) What is the relat</li> <li>ii) From your graph</li> <li>iii) 40.0g of solid F</li> <li>mass of crystals</li> <li>2. You are provide<br/>record your obse</li> <li>a) Add 20cm<sup>3</sup> of 2<br/>flask. retain bot</li> </ul> | ided plot a graph of solubility of c<br>ionship between the solubility of solid <b>I</b><br>A5 was dissolved in 100g of water<br>of <b>FA5</b> that would be formed.<br>ad with 10cm <sup>3</sup> of solution <b>CB35</b><br>rivations and inferences in the space<br>M aqueous Sodium hydroxide to a<br><b>h the filtrate and the residue</b> | ompound F<br>olid FA5 a<br>FA5 in wat<br>r at 90 <sup>0</sup> C. T<br>containing<br>ces provide<br>all of soluti | <ul> <li>FA5 (vertical axis) against temperature and temperature? Explain.</li> <li>er at 25.0°C.</li> <li>The resulting solution was then cooled to 25.0°C.</li> <li>TWO cations and ONE anion. Carry out the d.</li> <li>on CB35 provided. Shake well. Filter the mixtur</li> </ul> | (3marks)<br>(1mark)<br>(1mark)<br>Determine the<br>(1mark)<br>tests below and<br>re into a conical |
|                                                                                                                                                                                                                                                                          | Observations                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  | Inferences                                                                                                                                                                                                                                                                            |                                                                                                    |
|                                                                                                                                                                                                                                                                          | (1 mark)                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  | (1mark)                                                                                                                                                                                                                                                                               |                                                                                                    |
| b) To about $2 \text{cm}^3 \text{c}$                                                                                                                                                                                                                                     | f the filtrate, add (i.e. about 1 cm <sup>3</sup> c                                                                                                                                                                                                                                                                                            | of the acid)                                                                                                     | of 2M Nitric acid <b>drop wise</b> until in excess. Ret                                                                                                                                                                                                                               | ain the mixture                                                                                    |
|                                                                                                                                                                                                                                                                          | Observations                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                    |
|                                                                                                                                                                                                                                                                          | (½mark)                                                                                                                                                                                                                                                                                                                                        |                                                                                                                  |                                                                                                                                                                                                                                                                                       |                                                                                                    |
| Divide the mixture ir<br>i) To the FIRST po                                                                                                                                                                                                                              | ( <b>b)</b> above into TWO portions.<br>ortion, add aqueous Sodium hydrox                                                                                                                                                                                                                                                                      | kide solutic                                                                                                     | on dropwise until in excess.                                                                                                                                                                                                                                                          |                                                                                                    |
|                                                                                                                                                                                                                                                                          | Observations                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  | Inferences                                                                                                                                                                                                                                                                            |                                                                                                    |
| (1 mark)                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                | (1mark)                                                                                                          | )                                                                                                                                                                                                                                                                                     |                                                                                                    |
|                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                       | Page   293                                                                                         |

| istry 233/1,2&3   | Chemi                                                                                                                     |                                                                                                                                                     |
|-------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | a solution DROPWISE until in excess                                                                                       | ii) To the SECOND portion add 2M aqueous Ammon                                                                                                      |
|                   | Inferences                                                                                                                | Observations                                                                                                                                        |
|                   | (1mark)                                                                                                                   | (1 mark)                                                                                                                                            |
|                   | Irochloric acid.                                                                                                          | c) To about $2 \text{ cm}^3$ of the filtrate, add 3 drops of 2M Hy                                                                                  |
|                   | Inferences                                                                                                                | Observations                                                                                                                                        |
|                   | (1mark)                                                                                                                   | (1mark)                                                                                                                                             |
|                   | ified Barium chloride solution.                                                                                           | d) To about 2cm <sup>3</sup> of the filtrate, add about 1cm <sup>3</sup> of acid                                                                    |
|                   | Inferences                                                                                                                | Observations                                                                                                                                        |
|                   | (1mark)                                                                                                                   | (1 mark)                                                                                                                                            |
| this filtrate add | cid and allow it to filter into a test tube. To about $2$ cm <sup>3</sup> of cess and then filter into a clean test tube. | e) To the RESIDUE add about 5cm <sup>3</sup> of dilute Nitric a 2M aqueous Ammonia solution dropwise until in ex                                    |
|                   | Inferences                                                                                                                | Observations                                                                                                                                        |
|                   | (½mark)                                                                                                                   | (1mark)                                                                                                                                             |
| es provided.      | w and record your observations and inferences in the space tube and then place 10cm <sup>3</sup> of ethanol.              | <ul><li>3.You are provided with solid G. Carry out the tests bel</li><li>a) Place 1/3 spatula full of solid G into a clean dry test</li></ul>       |
|                   | -Dastr                                                                                                                    | Observations                                                                                                                                        |
|                   |                                                                                                                           | (½mark)                                                                                                                                             |
|                   | lid G and ignite in a non-luminous flame.                                                                                 | b) Using a metallic spatula, scoop a small portion of so                                                                                            |
|                   | M. Inferences                                                                                                             | Observations                                                                                                                                        |
| the solid         | Imark)<br>Imark)<br>ube. Add about 10cm3 of distilled water and shake until t                                             | <ul> <li>(1mark)</li> <li>c) Place the remaining solid G into a clean dry boiling dissolves. Divide the mixture obtained into 5 portion.</li> </ul> |
|                   | Inferences                                                                                                                | 1) To the 1 <sup>th</sup> portion, add solid Solium hydrogen carbo<br>Observations                                                                  |
|                   | (½mark)                                                                                                                   | (½mark)                                                                                                                                             |
|                   |                                                                                                                           | ii) To the 2 <sup>nd</sup> portion add 3 drong wivereal indicate                                                                                    |
|                   | Inferences                                                                                                                | Observations                                                                                                                                        |
|                   | (½mark)                                                                                                                   | (½mark)                                                                                                                                             |
|                   |                                                                                                                           |                                                                                                                                                     |
|                   | Inferences                                                                                                                | (11) To the third portion, add 4 drops of acidified KMNC<br>Observations                                                                            |
|                   | ( <sup>1</sup> /2mark)                                                                                                    | (1mark)                                                                                                                                             |
|                   | (/2//////)                                                                                                                | (min)                                                                                                                                               |
|                   |                                                                                                                           |                                                                                                                                                     |





18. In a experiment involving the reaction between magnesium and 1 M HCl, the volume (cm<sup>3</sup>) of hydrogen gas produced after t (seconds) was measured. The experiment was repeated using the same amount of magnesium reacting with 2 M HCl. On the axis below draw and label the two curves that would be obtained from the two experiments. (2mks)





a) In which set – up will the iron – nail rust? Explain

(2 mks)

29. A group of students dissolved 20cm<sup>3</sup> of 2M HCl in water and methylbenzene respectively. The resulting solutions were shaken thoroughly and used for reactions with various reagents. (a) Fill the table below with the correct observations that were made during the experiment

| Reagent     Solution of hydrogen chloride in water     Sol       (i)     Methyl orange     (½ mk)     (½       (ii)     Anhydrous sodium     (½ mk)     (½       carbonate     (½ mk)     (½ | ution of hydrogen chloride in<br>thylbenzene<br>mk)<br>mk)<br>(1 mk) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| met       (i)     Methyl orange     (½ mk)       (ii)     Anhydrous sodium     (½ mk)       carbonate     (½ mk)                                                                             | thylbenzene<br>mk)<br>mk)<br>(1 mk)                                  |
| (i)Methyl orange(½ mk)(½(ii)Anhydrous sodium<br>carbonate(½ mk)(½                                                                                                                            | mk)<br>mk)<br>(1 mk)                                                 |
| (ii) Anhydrous sodium<br>carbonate ( <sup>1</sup> / <sub>2</sub> mk)                                                                                                                         | (1 mk)                                                               |
| carbonate                                                                                                                                                                                    | (1 mk)                                                               |
|                                                                                                                                                                                              | (1 mk)                                                               |
| i) Explain the difference in the observations made for the two solutions. $\int_{0}^{0}$                                                                                                     |                                                                      |
| www.treekcser                                                                                                                                                                                |                                                                      |
| apers visit. V                                                                                                                                                                               |                                                                      |
| evision past pe                                                                                                                                                                              |                                                                      |
| tor tree re                                                                                                                                                                                  |                                                                      |

(2mks)

(2mks)

(1mk)

**KASSU JIONT EXAMINATION** 233/2CHEMISTRY Paper 2 **JUNE/JULY 2017 Time: 2 hours** 

The table below gives several samples of mixtures. Study the table and answer the questions that follow 1.

| Mixture 1 components          | Mixture 2 components              | Mixture 3 components   | Mixture 4 components |
|-------------------------------|-----------------------------------|------------------------|----------------------|
| Magnesium Sulphate            | Water                             | Silver Chloride        | Iron (III) Chloride  |
| Water                         | Magnesium Sulphate                | Lead Chloride          | 1ron (III) Oxide     |
| Silver Chloride               | Magnesium Nitrate                 | water                  | -                    |
| state one way in which the co | omposition of a mixture differs f | rom that of a compound | (1mk)                |

a). state one way in which the composition of a mixture differs from that of a compound

- Describe how Mixture 1 and Mixture 2 can be separated into its components b)
- Mixture 1 i)
- Mixture 2 ii)
- State the main property that makes components of Mixture 3 separable c).
- Draw a well labeled diagram of a simple laboratory set up which can be used to separate the components of Mixture 4 d). (2mks)
- e). The chart below gives a summary of steps which can be used to separate the components of mixture 3. Study it and answer the questions that follow



(1mk)

f). About 5 cm<sup>3</sup> of compound **D** was added into a boiling tube containing a mixture of distilled water and pentane. The mixture was shaken and then allowed to stand for about 2 hours. The figure below represents the set up at the end of the 2 hours.



The  $P^{H}$  of the liquid obtained from region **B** at the end of the experiment was found to be 7.0. Explain this observation (2mks)

- 4. Zinc metal can be extracted from its ores by reduction using carbon or through electrolytic process.
- a). Apart from Zinc blende, name another ore from which Zinc metal is extracted
- b). In the electrolytic process, an electric current is passed through a series of cells containing aqueous solution of pure Zinc Sulphate. The figure below represents one of the cells used in the electrolytic process



s

CI

Ar

a). Explain the trends shown by the atomic numbers and the atomic radii

AI

Si

Elements

Na

Mg

|     |                                                                                                                                     | Chemistry 233/1,2&3        |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|--|
| -   | i). Atomic number                                                                                                                   | (1mk)                      |  |  |  |
|     | ii). Atomic radii                                                                                                                   | (2maks)                    |  |  |  |
| b). | on the same axes, sketch the trend of reactivity across the period                                                                  | (1mk)                      |  |  |  |
| c). | write down the electronic configuration of phosphorous and sulphur in the following compounds                                       |                            |  |  |  |
|     | i). H <sub>3</sub> PO <sub>4</sub> (P=15)                                                                                           | (1 mk)                     |  |  |  |
|     | ii). $Na_2S_2O_3$ (S=16)                                                                                                            | (1mk)                      |  |  |  |
| d). | i). One of the elements given in the figure above is stored under water. Identify the element and giv                               | e a reason as to why it is |  |  |  |
|     | stored under water                                                                                                                  | (lmk)                      |  |  |  |
|     | ii). State one use of aluminium that can be associated with its malleability                                                        | (lmk)                      |  |  |  |
| e). | Explain the observation that would be made if the chloride of Phosphorous is exposed to moist air                                   | (2mks)                     |  |  |  |
| f). | distinguish between the terms electro negativity and electron affinity as used in chemistry                                         | (2mk)                      |  |  |  |
| 6.  | A radioactive isotope of Uranium $^{238}_{92}U$ Undergoes decay by emitting a beta particle.                                        |                            |  |  |  |
|     | a). write down a balanced nuclear equation to show this decay process                                                               | (1mk)                      |  |  |  |
|     | b). i). The half life of Uranium -238 is $4.5 \times 10^9$ years.                                                                   |                            |  |  |  |
|     | What is meant by the term half -life                                                                                                | (1mk)                      |  |  |  |
|     | ii). A sample of Uranium with 720 radioactive atoms decayed for 22.5 x 10 <sup>9</sup> years. On the grid provided, plot a graph of |                            |  |  |  |
|     | number of radioactive atoms of uranium -238 against time in years                                                                   | (3mks)                     |  |  |  |
|     | iii). Use the graph to determine the number of radioactive atoms when time is $16.0 \times 10^{9}$ years                            | (1mk)                      |  |  |  |
| c). | Describe two ways in which a nuclear reactions differ from a chemical reaction                                                      | (2mks)                     |  |  |  |
| d). | Explain the source of electrons in a radioactive process                                                                            | (1mk)                      |  |  |  |

 e). state one application of half life (1mk)
 7. In a class experiment to study the rate of reaction between Sodium Sulphite and dilute Hydrochloric acid, 1.26g of Sodium Sulphite was reacted with excess 2M Hydrochloric acid. The volume of Sulphur (IV) (V) of de evolved was plotted against time as shown in the graph below. 304





# KASSU JET CHEMISTRY PRACTICAL **JUNE 2017** CONFIDENTIAL **INSTRUCTIONS TO SCHOOLS:**

In addition to usual provisions and fitting in the science laboratory each candidate is expected to have the following.

- One pipette -
- One burette \_
- One pipette filler \_
- About 60 cm<sup>3</sup> of solution A -
- About 100 cm<sup>3</sup> of solution B \_
- 3 cm of solid C (magnesium ribbon) -
- Two 250ml conical flask -
- One boiling tube -
- 10ml measuring cylinders -
- -A stop watch/clock
- Past papers visit. www.treekcsepastpapers.com 500ml distilled water provided in wash bottle -
- Means of labeling -
- One 100ml glass beaker -
- About 1.0g of solid F -
- Metallic spatula -
- Filter paper -
- One filter funnel -
- At least 5 dry clean test tubes \_
- 2 dry boiling tubes \_
- Acidified potassium chromate (VI) solution \_
- Acidified potassium manganate (VII) \_
- Bromine water \_
- \_ Solid T (maleic acid about 2g)
- -10-110 °C thermometer -
  - Access to:
- Source or means of heating -
- 2M NaOH supplied with a dropper \_
- 2M NH<sub>4</sub>OH supplied with a dropper \_
- Potassium iodide solution -
- Dilute nitric v acid \_
- Universal indicator paper and a pH chart -
- 1 cm of magnesium ribbon -Notes
- Solution A is 0.7 M sulphuric (VI) acid -
- Solution B is 0.5 M sodium hydroxide -
- -Solid F is a mixture of sodium sulphite and lead (II) carbonate in the ratio 1:1
- \_ Solid T is maleic acid 🌼

|            |                           |                     |                  |                |                  |          |                     |          |          |                     |                 |                     | Chernise              | 19 200/ 1,200         |
|------------|---------------------------|---------------------|------------------|----------------|------------------|----------|---------------------|----------|----------|---------------------|-----------------|---------------------|-----------------------|-----------------------|
|            | KASSU JOINT EVA           | LUAT                | ΓΙΟΝ             |                |                  |          |                     |          |          |                     |                 |                     |                       |                       |
|            | 233/3                     |                     |                  |                |                  |          |                     |          |          |                     |                 |                     |                       |                       |
|            | CHEMISTRY                 |                     |                  |                |                  |          |                     |          |          |                     |                 |                     |                       |                       |
|            | PAPER 3                   |                     |                  |                |                  |          |                     |          |          |                     |                 |                     |                       |                       |
|            | PRACTICAL                 |                     |                  |                |                  |          |                     |          |          |                     |                 |                     |                       |                       |
|            | June 2017                 |                     |                  |                |                  |          |                     |          |          |                     |                 |                     |                       |                       |
| 1          | Vou and movided with      | 071                 | 1                | <b>hi</b> o    |                  | aid a    | lution              | ٨        |          |                     |                 |                     |                       |                       |
| 1.         | You are provided with     | : U. / N<br>do. col | /I suip          | nuric          | (v1) a           | icia, se | olution             | A        |          |                     |                 |                     |                       |                       |
|            | Magnagium ribban ga       | 134  C              | ution            | D              |                  |          |                     |          |          |                     |                 |                     |                       |                       |
|            | Vou are required to de    | tormin              | a tha            |                |                  |          |                     |          |          |                     |                 |                     |                       |                       |
|            | The temperature change    | o who               | e me.            | macin          | m roo            | oto wi   | h avaa              | م مياي   | hurio    | (M)                 | aid             |                     |                       |                       |
| -          | Number of moles sulpl     | e wie               | VI) a            | sid the        | at rem           | oin un   | reacted             | ss suif  | munc     | (v1) av             | ciu             |                     |                       |                       |
| -          | Number of moles of m      | agnes               | ium th           | at res         | at rem<br>acted  | ann un   | reacted             | L        |          |                     |                 |                     |                       |                       |
|            | Procedure1                | agnes               | ium u            | iut rec        | icicu            |          |                     |          |          |                     |                 |                     |                       |                       |
|            | i) Using a burette me     | easure              | 50 cn            | $n^3$ of $z$   | solutio          | n A a    | nd plac             | e it in  | a 100i   | nl beal             | ker.            |                     |                       |                       |
|            | ii) Stir the solution g   | ently               | with t           | he the         | ermom            | eter m   | aking a             | and tal  | ke its t | empera              | ature a         | fter everv half a m | inute.                |                       |
|            | iii) Record your resul    | ts as s             | hown             | in tal         | ole I.           |          | 8                   |          |          | F                   |                 | j                   |                       |                       |
|            | Table I                   |                     |                  |                |                  |          |                     |          |          |                     |                 |                     |                       |                       |
| a)         |                           |                     |                  |                |                  |          |                     |          |          |                     |                 | 0                   |                       |                       |
| ĺ.         | Time (min)                | 0                   | 1/2              | 1              | 11/2             | 2        | 21/2                | 3        | 31/2     | 4                   | 41/2            | 5                   |                       |                       |
|            | Temperature(°C)           |                     |                  |                |                  |          |                     |          |          |                     |                 | .6.                 |                       |                       |
|            |                           |                     |                  |                |                  |          |                     |          | 1        |                     | •               | e                   | (                     | (3 marks)             |
|            | iv) After one and half    | (11/2)              | minut            | es, pu         | it the r         | nagne    | sium ri             | bbon,    | solid (  | C, in th            | ne 50 çı        | n of solution B.    |                       |                       |
|            | v) Stir the mixture ge    | ently v             | vith th          | e the          | mome             | eter an  | d recor             | d the t  | emper    | ature c             | of the n        | nixture after every | half-minu             | ite as shown          |
|            | in the table above        | up to               | the fif          | th mi          | nute.            |          |                     |          |          |                     | 20 <sup>0</sup> |                     |                       |                       |
|            | Keep the resultin         | g solu              | tion f           | 'or us         | e in p           | roced    | ure 2               |          |          | يجي -               | 0               |                     |                       |                       |
|            | Plot a graph of ten       | nperat              | ure ag           | ainst          | time.            |          |                     |          |          | X                   |                 |                     | (                     | (3 marks)             |
|            | Use the results in t      | the tab             | ole to o         | deterr         | nine th          | ne higł  | nest cha            | ange ir  | ı temp   | erature             | $e(\Delta T)$   | for the reaction.   | (                     | (1 mark)              |
|            | Procedure 2:              |                     |                  |                |                  |          |                     |          | Nº.      |                     |                 |                     |                       | 2                     |
|            | Transfer all the solution | n obta              | ined i           | n pro          | cedure           | e 1 into | a 250               | ml co    | nical f  | $a_{3}k. C$         | clean th        | e burette and use   | it to place           | 50 cm <sup>°</sup> of |
|            | distilled water into the  | beake               | r usec           | l in pr        | ocedu            | re 1. 1  | ranste              | r all th | e 50 c   | m <sup>°</sup> into | o the $2$ :     | 50 ml conical flash | c containin           | ig the                |
|            | solution from procedur    | e I. L              | abel t           | his as         | soluti           | on D.    | Empty               | the bi   | irette a | nd fill             | it with         | solution B. Pipet   | te 25 cm $^{\circ}$ ( | of solution D         |
|            | and place it into an em   | pty 25              | 0  m             |                | al flash         | K. Add   | 2-3 dr              | ops of   | pnenc    | npntna              | ilein in        | dicator and titrate | Solution B            | against               |
| <b>b</b> ) | Table II                  | result              | s in ta          | ible II        | . Kepe           | at the   |                     | n of se  | JIULIOI  | Бaga                | inst so         | fution D and comp   | siele lable           | 11.                   |
| 0)         |                           |                     |                  |                |                  | JQ0      |                     |          |          |                     |                 |                     |                       |                       |
|            |                           |                     |                  |                | 0                | છે ે     |                     | T        | 1        | T                   | III             |                     |                       |                       |
|            |                           |                     |                  | 2              | <u></u>          | r.       |                     | 1        | -        | 1                   | 111             |                     |                       |                       |
|            | Final burette             | readin              | g (cm            | <sup>3</sup> ) | <i>5</i> /       |          |                     |          |          |                     |                 |                     |                       |                       |
|            | Initial burette           | e readi             | ng (ci           | n <sup>3</sup> | •                |          |                     |          |          |                     |                 |                     |                       |                       |
|            |                           |                     |                  | <u>©″</u>      | 3                |          |                     |          |          |                     |                 |                     |                       |                       |
|            | Volume of so              | lution              | Case             | ed (cn         | 1 <sup>°</sup> ) |          |                     |          |          |                     |                 |                     |                       |                       |
|            |                           | 3                   | 1                |                |                  |          |                     |          |          |                     |                 |                     | (                     | (4 marks)             |
|            | i) Calculate the average  | agevo               | olume            | of so          | lution           | C used   | 1.                  |          |          |                     |                 |                     | (                     | (1 mark)              |
|            | ii) Calculate the num     | ber of              | mole             | s of:          |                  |          |                     |          |          |                     |                 |                     |                       | ``´´                  |
|            | I. 0.5 M sodium hyd       | roxide              | e used           |                |                  |          |                     |          |          |                     |                 |                     | (                     | (1 mark)              |
|            | II. Sulphuric (VI) aci    | d in 2:             | $5 \text{ cm}^3$ | of so          | lution           | D        |                     |          |          |                     |                 |                     | (                     | (1 mark)              |
|            | III. Sulphuric (VI) aci   | d in 10             | $00 \text{cm}^3$ | of sc          | lution           | D        |                     |          |          |                     |                 |                     | (                     | (1 mark)              |
|            | IV. Sulphuric (VI) aci    | d in 5              | $0 \text{ cm}^3$ | of so          | lution           | D        |                     |          |          |                     |                 |                     | (                     | (1 mark)              |
|            | V. Sulphuric acid that    | t react             | ed wi            | th ma          | gnesiu           | ım       |                     |          |          |                     |                 |                     | (                     | (1 mark)              |
|            | VI. Magnesium that re     | eacted              |                  |                |                  |          |                     |          |          |                     |                 |                     | (                     | (1 mark)              |
| 2.         | You are provided with     | solid               | F. Cai           | ry ou          | t the f          | ollowi   | ng test             | s and v  | write y  | our ob              | servati         | ons and inferences  | s in the spa          | aces                  |
|            | provided.                 |                     |                  | -              |                  |          | -                   |          | 2        |                     |                 |                     |                       |                       |
| (a)        | Place all of solid F in a | ı boilii            | ng tub           | e. Ad          | d aboı           | it 10 c  | m <sup>3</sup> of c | listille | d wate   | r and s             | shake t         | horoughly. Filter t | he mixture            | e into another        |
| . /        | boiling tube.             |                     | -                |                |                  |          |                     |          |          |                     |                 | - •                 |                       |                       |
|            | Retain the residue fo     | r use               | in tes           | t (b) l        | below.           |          |                     |          |          |                     |                 |                     |                       |                       |
| i)         | Describe the colour of    | the re              | esidue           | and f          | iltrate.         |          |                     |          |          | (1 mar              | ·k)             |                     |                       |                       |
|            | Residue                   |                     |                  |                |                  |          |                     |          |          |                     |                 |                     |                       |                       |
|            | Filtrate                  |                     |                  |                |                  |          |                     |          |          |                     |                 |                     |                       |                       |
|            |                           |                     |                  |                |                  |          |                     |          |          |                     |                 |                     |                       |                       |
|            |                           |                     |                  |                |                  |          |                     |          |          |                     |                 |                     |                       |                       |

|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chemistry 233/1,2&3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| To about 2 cm <sup>3</sup> of the filtrate in a | a test tube, add a few dr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ops of acidified potassium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | chromate (VI) solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Observations                                    | (1mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inferences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| To about $2 \text{ cm}^3$ of the filtrate, ad   | d sodium hydroxide dro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | op wise until in excess.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Observations                                    | (1mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inferences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| L                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| i) Place about a third $(\frac{1}{3})$ of th    | e residue on a metallic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | spatula and burn it in a Bur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nsen burner flame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Observations                                    | (1mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inferences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ii) Place the remaining residue                 | in a test tube and add al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | bout 5 cm <sup>3</sup> of dilute nitric (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (V) acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Observations                                    | (1mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inferences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| iii) Describe how to test for lead              | (II) ions in the solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | obtained in b (ii) above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Observations                                    | (2mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inferences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| iv) Carry out the test in b (iii) ab            | ove.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ubservations                                    | (Imark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inferences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Imark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| provided                                        | arry out the experiment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | is below. While your observ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | vations and interences in the spaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Place about a third $(\frac{1}{3})$ of solid T  | on a metallic spatula a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nd burn it in a Bunsen burr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ner flame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Observations                                    | (1mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inferences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Place the remaining amount of su                | ubstance T in a boiling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tube and add about 10 cm <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of distilled water. Divide the mixture into                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4 portions.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and the second s |
| To the first portion, add the mag               | nesium ribbon provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Observations                                    | $(\frac{1}{2} \text{ mark})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Inferences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ( ½ mmark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Method used                                     | (2mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inferences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (1mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| To the third portion, add acidifie              | d potassium manganate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (VII) solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Timark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Observations                                    | $(\frac{1}{2} \text{ mark})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Inferences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ( ½ mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| To the fourth portion, add ac                   | idified potassium chron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mate (VI) solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Observations                                    | ( ½ mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Inferences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ( <sup>1</sup> / <sub>2</sub> mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| tortree                                         | tevision past papers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | yisit. W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                 | To about 2 cm <sup>3</sup> of the filtrate in a<br>Observations<br>To about 2 cm <sup>3</sup> of the filtrate, ad<br>Observations<br>i) Place about a third (½) of the<br>Observations<br>ii) Place the remaining residue<br>Observations<br>iii) Describe how to test for lead<br>Observations<br>iv) Carry out the test in b (iii) ab<br>Observations<br>You are provided with solid T. C<br>provided.<br>Place about a third (½) of solid T<br>Observations<br>Place the remaining amount of su<br>4 portions.<br>To the first portion, add the mage<br>Observations<br>To the second portion, determine<br>Method used<br>To the third portion, add acidifie<br>Observations<br>To the fourth portion, add ac | To about 2 cm <sup>3</sup> of the filtrate in a test tube, add a few dr<br>Observations (1mark)<br>To about 2 cm <sup>3</sup> of the filtrate, add sodium hydroxide dr<br>Observations (1mark)<br>i) Place about a third (½) of the residue on a metallic.<br>Observations (1mark)<br>ii) Place the remaining residue in a test tube and ad a<br>Observations (1mark)<br>iii) Describe how to test for lead (II) ions in the solution<br>Observations (2mark)<br>iv) Carry out the test in b (iii) above.<br>Observations (1mark)<br>You are provided with solid T. Carry out the experimen<br>provided.<br>Place the remaining amount of substance T in a boiling<br>4 portions.<br>To the first portion, add the magnesium ribbon provided<br>Observations (½ mark)<br>To the second portion, determine the pH.<br>Method used (2mark)<br>To the fourth portion, add acidified potassium chron<br>Observations (½ mark)<br>To the fourth portion, add acidified potassium chron<br>Observations (½ mark)<br>To the fourth portion, add acidified potassium chron<br>Observations (½ mark) | To about 2 cm³ of the filtrate in a test tube, add a few drops of acidified potassium         Observations       (1mark)       Inferences         To about 2 cm³ of the filtrate, add sodium hydroxide drop wise until in excess.       Observations       (1mark)       Inferences         i)       Place about a third (½) of the residue on a metallic spatula and burn it in a Bur       Observations       (1mark)       Inferences         ii)       Place the remaining residue in a test tube and add about 5 cm³ of dilute nitric (       Observations       (1mark)       Inferences         iii) Describe how to test for lead (II) ions in the solution obtained in b (ii) above.       Observations       (2mark)       Inferences         voi are provided with solid T. Carry out the experiments below. Write your observations       (1mark)       Inferences         You are provided with solid T. Carry out the experiments below. Write your observations       (1mark)       Inferences         Place about a third (½) of solid T on a metallic spatula and burn it in a Bunsen burn of substance T in a boiling tube and add about 10 cm² 4 portions.       Inferences         Place the remaining amount of substance T in a boiling tube and add about 10 cm² 4 portions.       Inferences       To the first portion, add the magnesium ribbon provided.         Observations       (½ mark)       Inferences       To the fourth portion, add acidified potassium chromate (VI) solution.         Observations       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

#### Chemistry 233/1,2&3 MOKASA 233/2 CHEMISTRY PAPER 2 2017 **TIME: 2 HOURS** Use the grid below to answer the questions that follow. Letters do not represent the actual symbol of the elements. 1. F 0 I Μ G Р J K L Ν Q Η What family name is given to elements G and H? (1 mark) a) State and explain the difference in reactivity between. b) i) I and J $(1 \frac{1}{2} \text{ marks})$ ii) N and P $(1 \frac{1}{2} \text{ marks})$ c) How does atomic radius of K compare to that of L? Explain. (2 marks) d) Explain the trend in melting points down the group of elements to which I and J belong. (2 marks) e) Write down an equation for the reaction between K and P. (1 mark) f) Give one use of element Q. (1 mark) Write down the electronic arrangement of a stable ion of H. (1 mark) i) 2. The set-up below was used during the electrolysis of aqueous magnesium sulphate using inert electrodes. www.treekcset Aqueous Magnesium suiphaie Name a suitable pair of electrodes for this experiment? (1 mark) i) ii) Identify the anions and cations in the solution. (2 marks) On the diagram label the cathode. (1 mark) iii) Write an equation for the reaction that took place at the cathode. (1 mark) iv) Explain the change that occurred to the concentration of magnesium sulphate solution during the experiment. (2 marks) v) vi) During the electrolysis, a current of 2 amperes was passed through the solution for 4 hours. Calculate the volume of the gas produced at the cathode. (1 Faraday= 96500 coulombs and molar volume of a gas at room temperature is 24000cm<sup>3</sup>). (2 marks) vii) One of the uses of electrolysis is electroplating. Give two reasons why electroplating is necessary. (1 mark) b) The diagram below is a cross- section of a dry cell. Study it and answer the questions that follow. Brass cap Sealing material carbon rod



- i) On the diagram, show with a (+) sign the positive terminal
- ii) Write the equation for the reaction in which electrons are produced.
- iii) Give one disadvantage of dry cells.

(1 mark) (1 mark) (1 mark)

(1mark)

(1mark)

(1mark)

 $(1_{1/2}^{1/2} \text{ marks})$ 

 $(1'_2 marks)$ 

(1mark)

(1mark)

(1mark)

(2marks)

(2marks)

3. The scheme below shows the industrial manufacture of sulphuric (VI) acid. Study it and answer the questions that follow.



- i) State two functions of the chamber A.
- ii) Explain why concentrated Sulphuric (VI) acid is used in the absorption chamber and not water. (1mark)
- iii) Write the equation for the reaction that takes place at the absorption chamber
- iv) Name two catalysts that can be used in the catalytic chamber.

(b) Sulphuric (VI) acid is used in making fertilizers. What volume of ammonia gas will be required to make 25kg of ammonium sulphate? (N=14,H=1.0 S = 32, O = 16.0 Molar gas volume at r.t.p = 24.0dm<sup>3</sup>) (2marks)

c) The equation below shows the oxidation of Sulphur (IV) oxide to Sulphur (VI) oxide in the contact process.  $2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)} \Delta H = -196 \text{ kJ/mol}^2$ 

- i) State and explain the effect on the yield of Sulphur (IV) oxide when.
- a) the temperature increased.
- b) the amount of oxygen is increased.
- 4. Study the following table and then use it to answer the questions that follow.

| <u> </u>      |                     |
|---------------|---------------------|
| Hydrocarbon   | Boiling point (k)   |
| $CH_4$        |                     |
| $C_2H_6$      | s <sup>ev</sup> 184 |
| $C_3H_8$      | 231                 |
| $C_{4}H_{10}$ | 273                 |
| $C_{5}H_{12}$ | 309                 |
| $C_{6}H_{14}$ | 342                 |
|               |                     |

- a) These organic compounds belong to the same homologous series.
- i) What is meant by the term homologous series?
- ii) To which homologous series do the above hydrocarbons belong?
- iii) Select one hydrocarbon that would be a liquid at room temperature .
- iv) Compare the boiling point of CH<sub>4</sub> and C<sub>6</sub>H<sub>14</sub>? Explain your answer
- v) Give one chemical test to distinguish between  $C_2H_6$  and  $C_2H_4$
- b) Study the scheme below and answer the questions that follow.



 (i) Name the reagents used in Step I Step II

 (1/2 Mark) (1/2 Mark)
 (1/2 Mark) (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)
 (1/2 Mark)</

| Page | 320 |
|------|-----|

5. Study the flow diagram below and answer the questions that follow:-





| time (seconds) | Total volume of hydrogen gas produced |
|----------------|---------------------------------------|
|                | $(\mathrm{cm}^3)$                     |
| 0              | 0                                     |
| 60             | 220                                   |
| 120            | 420                                   |
| 180            | 540                                   |
| 240            | 620                                   |
| 300            | 640                                   |
| 360            | 640                                   |
| 420            | 640                                   |
|                |                                       |

i) On the grid provided, plot a graph of total volume of hydrogen gas produced (vertical axis) against time.

ii) From the graph, determine the volume of gas produced at the end of 135 seconds.

c) Determine the rte of reaction between the  $4^{th}$  and the  $5^{th}$  minute.

d) Explain why the volume of the gas remains constant after the  $300^{\text{th}}$  second.

e) Given that 2.5 cm<sup>3</sup> of the total volume of the hydrogen gas was from the reaction between magnesium and dilute hydrochloric acid, calculate the percentage of mass of aluminium present in the 0.55g of the alloy. (al = 27, Moalr Gas Volume at r.t.p. = 24 litres)
 (3 marks)

(3 marks)

(1 mark)

(2 marks)

(1 mark)

# MOKASA **CHEMISTRY** 2017 PAPER 3

1. You are provided with;

(i) Solution A – Ferrous ammonium sulphate (FeSO<sub>4</sub>, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>.XH<sub>2</sub>O) containing 8.5g in solution 250cm3 of solution. (ii) Solution B 0.02M acidified potassium manganate (VII)

You are required to determine the value of X in FeSO<sub>4</sub>.(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>.XH<sub>2</sub>O

# PROCEDURE

Fill the burette with solution B. Pipette 25.0cm3 of solution A into A into a clean conical flask and titrate until the solution turns pink. Record your results in table below. Repeat the procedure.

2.

| (a)                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Table I                                                     | Ι                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | II                | III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| Final burette reading (cm <sup>3</sup> )                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Initial burette reading (cm <sup>3</sup> )                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Volume of solution B used (cm <sup>3</sup> )                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (4 mks)           |
| (b) (i) Calculate the average volume                        | of solution <b>P</b> used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (4  mks)          |
| (ii) The number of moles of solu                            | tion B in volume in (i) above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   | ers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1  mk)           |
| (a) Given that the reaction is represented                  | anted by the ionic equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | and a second sec | (1 111K)          |
| (c) Orven that the reaction is represented by $M_{re}Q^{-}$ | 411.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S                 | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |
| $MID_{4(aq)} + \delta H_{(aq)} \rightarrow MIn_{(aq)} +$    | $4H_2O_{(l)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e.9.0             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Determine;                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CINCESC.          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1 1)             |
| (i) The number of moles of iron                             | (II) salt solution A in 25.0cm3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of the solution u | sed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1  mk)           |
| (ii) The concentration of solutio                           | n A in moles per litre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | fle               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2  mks)          |
| (iii) The concentration of solution                         | on A in grams per litre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2  mks)          |
| (iv) The relative formula mass of                           | f iron (II) sait                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 56 NT 14 G        | <b>20</b> 0 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2  mks)          |
| (v) The value of X in the formul                            | a $FeSO_4.(NH_4)_2SO_4.XH_2O$ Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 56, N = 14, S = | = 32, 0 = 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1 mk)            |
| You are provided with;                                      | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 4.0g of solid N.                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| You are required to determine the so                        | lubility of N indistilled water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Procedure I                                                 | and the second sec |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| i. Fill the burette with distilled wa                       | ter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| ii. Place solid N in a boiling tube.                        | cil <sup>OI</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| iii. Transfer 4.0cm <sup>3</sup> of distilled wate          | if from the burette into the boil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ling tube contain | ing solid N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| iv. Heat the mixture while stirring v                       | with thermometer to a temperat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ure of 80°C.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| v. Allow the solution to cool while                         | stirring with a thermometer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| vi. Record the temperature at which                         | a crystals start to form in the ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ble below.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| vii. Add a further 2.0cm <sup>3</sup> of distille           | d water from the burette to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e mixture. Repea  | t procedure (iv) and (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | v) above and reco |
| the crystallization temperature.                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Complete table II below by adding v                         | olumes of distilled water as inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | licated (PRESE    | RVE THE CONTEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TS)               |
| Volume of distilled water                                   | Crystallization temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Solubility        | of solid N in g/100g w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | /ater             |
| 4                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 6                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 0                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 12                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (6 mks)           |

b) On the grid provided, plot a graph of solubility of N (Y-axis) against crystallization temperature. (3 mks) c) From the graph, determine (i) The solubility of N at 500C (1 mk)

(ii) The temperature at which 40g of P dissolves in 50g water.

# PROCEDURE II

(i) Place 2cm3 of the preserved solution and add 2 drops of acidified potassium manganate (VII)

| Observation | Inference |        |
|-------------|-----------|--------|
| (1 mk)      |           | (1 mk) |

(1 mk)

# stry 233/1,2&3

|              |                                                   |                                   | Chemistry 233/                                    |
|--------------|---------------------------------------------------|-----------------------------------|---------------------------------------------------|
| (i           | i) To $2$ cm <sup>3</sup> of the preserved soluti | on in a second test add a spatu   | la of sodium hydrogen carbonate powder            |
| (I           | Observation                                       | Inference                         |                                                   |
|              | (1 mk)                                            | interence                         | (1  mk)                                           |
| ſi           | ii) To 2cm <sup>3</sup> of the preserved solut    | ion in a third test tube add 2 cr | rops of universal indicator.                      |
| ( )          | Observation                                       | Inference                         |                                                   |
|              | (1 mk)                                            |                                   | (1 mk)                                            |
| 3. You a     | re provided with solid Q.                         |                                   |                                                   |
| (a) A        | dd about 20cm3 of distilled water                 | to solid Q and shake.             |                                                   |
| (i           | )                                                 |                                   |                                                   |
|              | Observation                                       | Inference                         |                                                   |
|              | (1 mk)                                            |                                   | (1 mk)                                            |
|              | Filter the solution and label the                 | filtrate as F and put 4cm3 of th  | he filtrate into three test tubes.                |
| (i           | i) To the first test tube, add four d             | rops of 2M sodium hydroxide       | solution, then warm the mixture with moist litmus |
|              | paper at the mouth of the test t                  | ube.                              |                                                   |
|              | Observation                                       | Inference                         |                                                   |
|              | (1 mk)                                            |                                   | (1 mk)                                            |
| (i           | ii) To the second solution F add a                | mmonia solution a little until i  | in excess.                                        |
|              | Observation                                       | Inference                         |                                                   |
|              | (1 mk)                                            |                                   | (1 mk)                                            |
|              |                                                   |                                   | es.                                               |
|              |                                                   |                                   | er                                                |
| (IV) I o the | third solution of F add four drops                | s of nydrochloric acid.           | *0 <sup>0×</sup>                                  |
|              | Observation                                       | Interence                         | Gu                                                |

(1 mk) (1 mk) (b) (i) To the residue, add nitric acid just enough to cover the solid.

Observation Inference

<u>v(</u>P (1 mk) mk) (ii) Dip a glass rod in the solution in (i) above and burn in non-luminous flame.

| () 1 0      |             |
|-------------|-------------|
| Observation | Inference N |

| (1 mk) | Š. | (1 | mk) |
|--------|----|----|-----|
|        |    |    |     |

(iii) To the solution in (i) above, add about three drops of sodium sulphate solution. 5

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ( <u>2</u> .)         |    |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----|-----|
| Observation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Inference             |    |     |
| (1 mk)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | × 9°                  | (1 | mk) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AS.                   |    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                     |    |     |
| نیز                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 <sup>1</sup> .     |    |     |
| - Ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>D</b> <sup>*</sup> |    |     |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |    |     |
| - Children |                       |    |     |
| 40°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |    |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |    |     |

|          |                                                                                         | C                                                                                                               | hemistry 233/1,2&3         |
|----------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------|
|          | NYERI CENTRAL                                                                           |                                                                                                                 |                            |
|          | CHEMISTRY 233/1                                                                         |                                                                                                                 |                            |
|          | FORM 4                                                                                  |                                                                                                                 |                            |
|          | PAPER 1                                                                                 |                                                                                                                 |                            |
| 1.       | State the difference between the following                                              | salts: Efflorescent and hygroscopic salts.                                                                      | (2mks)                     |
| 2.       | The diagram below shows chromatograms                                                   | for three dyes.                                                                                                 |                            |
|          |                                                                                         |                                                                                                                 |                            |
|          | · · · · · · · · · · · · · · · · · · ·                                                   | · · • ·                                                                                                         |                            |
|          | · · · · · · · · · · · · · · · · · · ·                                                   |                                                                                                                 |                            |
|          |                                                                                         |                                                                                                                 |                            |
|          |                                                                                         |                                                                                                                 |                            |
|          | Red Alue Cropn                                                                          | F                                                                                                               |                            |
|          |                                                                                         |                                                                                                                 |                            |
|          | (a) Which pure dye is not present in the m                                              | nixture E?                                                                                                      | (1mk)                      |
|          | (b) Which of the three pure dyes is the leas                                            | st sticky? Give a reason.                                                                                       | (2mks)                     |
| 2        | (c) Show on the diagram the solvent front.                                              | anner (II) exide and notassium Chloride Describe how each se                                                    | (IMK)<br>lid substance can |
| 5.       | be obtained from the mixture.                                                           | opper (11) oxide and polassium chioride. Describe now each so                                                   | (3mks)                     |
| 4.       | Explain in terms of structure and bonding v                                             | vhy the boiling point of chlorine is very low while that of sodiu                                               | m oxide is high.           |
|          |                                                                                         | 5.                                                                                                              | (3mks)                     |
| 5.       | The table below shows the pH values of so                                               | lutions P,Q,R and S.                                                                                            |                            |
|          |                                                                                         | L H N L                                                                                                         |                            |
|          | D                                                                                       | pH value                                                                                                        |                            |
|          |                                                                                         |                                                                                                                 |                            |
|          | R                                                                                       | 8.7                                                                                                             |                            |
|          | S                                                                                       | 7.0                                                                                                             |                            |
|          |                                                                                         | un and a second and a second a |                            |
|          | (a) Identify the strongest base.                                                        | un hadaanida 🕺                                                                                                  | (1mk)                      |
|          | (b) Which solution is likely to be magnesic<br>(c) Which two solutions would react with | zinc(II) oxide                                                                                                  | (1mk)                      |
| 6.       | (i) Carbon (IV) Oxide neither burns nor si                                              | upport combustion, however burning magnesium continues to b                                                     | ourn in it. Explain.       |
|          |                                                                                         |                                                                                                                 | (2mks)                     |
|          | (ii) State two properties of Carbon (IV) Ox                                             | tide that makes it suitable for putting off petrol fires.                                                       | (1mk)                      |
| 7.       | (i) State Graham's Law of diffusion.                                                    |                                                                                                                 | (1mk)                      |
|          | (1) 80cm of Carbon (1v) oxide diffused in<br>the same hole under same conditions        | Rough a small note in 40 seconds while $50 \text{ cm}^{-3}$ of hydrogen to diffuse (1)                          | A=1 C=12 O=16              |
|          | the same note under same conditions.                                                    | Calculate the time taken by the soem of hydrogen to diffuse (1                                                  | (3mks)                     |
| 8.       | An element C has atomic number 14 and ar                                                | nother element D has atomic number 17.                                                                          | ()                         |
|          | (i) Using dots(.) and crosses (x) to represent                                          | ent the outermost electrons, show bonding in the compound for                                                   | med between C and          |
|          | D.                                                                                      |                                                                                                                 | (2mks)                     |
| 0        | (1) Write the configuration of C and D.                                                 | why graphite conducts electricity whereas diamond does not                                                      | (1mk)                      |
| 9.<br>10 | (a) Name the chief ore used for extraction                                              | of Copper metal                                                                                                 | (1  mk)                    |
| 10.      | (b) State the method used to concentrate th                                             | e ore mentioned above.                                                                                          | (1mk)                      |
| 11.      | State and explain the effect on the equilibri                                           | um when the pressure is increased in the reaction below.                                                        | (2mks)                     |
|          | $H_{2(g)} + Cl_{2(g)} \longrightarrow 2HCl_{(g)}$                                       |                                                                                                                 | <i></i>                    |
| 12.      | (a) State Charle's Law.                                                                 | burgeting. The tube contains $0.75 \mathrm{cm}^3$ of air at $5^0 \mathrm{C}$ . What would                       | (1mk)                      |
|          | if it is taken into a container whose ten                                               | perature is controlled at $25^{\circ}C^{\circ}$ Assume the pressure of the gas                                  | in the ball remains        |
|          | constant.                                                                               | iperature is controlled at 25 °C. Assume the pressure of the gas                                                | (3mks)                     |
| 13.      | Element Y ahs atomic number 13 while ele                                                | ment X has atomic number 12.                                                                                    | 、 <i>)</i>                 |
| (a)      | Which element has the smallest atomic radi                                              | ius? Explain                                                                                                    | (2mks)                     |
| b)       | Select the element that has the highest melt                                            | ing point. Explain                                                                                              | (2mks)                     |
| 14.      | A solid Q was burned in excess oxygen to f                                              | form an oxide w. when reacted with cold water, the oxide W p                                                    | broduced a                 |
| (a)      | Give a possible identity of solid O                                                     | anon rongins a giowing spinit.                                                                                  | (1mk)                      |
| (b)      | Identify solution S.                                                                    |                                                                                                                 | (1mk)                      |
| (c)      | Write the chemical equation for the reaction                                            | n between oxide W and cold water.(1mk)                                                                          | . /                        |
|          |                                                                                         |                                                                                                                 |                            |



25. Give two ions each that cause water hardness:



(a) Explain why the pH of solution is above 7.

(1mk) (1mk)

(b) What is the use of inverted funnel?

# NYERI CENTRAL **CHEMISTRY 233/2** FORM 4 PAPER 2

1. (a) The grid given below represents part of the periodic table. Study it and answer the questions that follow. (The letters do not represent the actual symbols of elements)

|   | ] |   |   |   |   |   |
|---|---|---|---|---|---|---|
| Α |   |   | Е |   | Н |   |
|   | С | D |   | G |   | Κ |
| В |   |   | F |   | J |   |

- Giving reasons, select the element which is (i)
- Most reactive non metal (2mks) T Most reactive metal (2mks) II. (ii) How does reactivity of A compare with that of B. Explain (1mk) (iii) Explain why the atomic radius of K is smaller than that of G. (1mk) (iv) An element W forms ion  $W^{2-}$ , if w is in period 3, indicate the position of w on the grid. (1mk) (1mk)
- v) Write the formula of the compound formed when C reacts with G. b) Study the information in the table below and answer the questions that follow

| c) study the I | b) Study the information in the table below and answer the questions that forom. |                  |                         |                  |               |  |  |
|----------------|----------------------------------------------------------------------------------|------------------|-------------------------|------------------|---------------|--|--|
| Substance      | $M.P(^{0}C)$                                                                     | $B.P(^{0}C)$     | Electrical conductivity |                  | Solubility in |  |  |
|                |                                                                                  |                  |                         | <u>ج</u> .       | water         |  |  |
|                |                                                                                  | In solid state   | In molten state         | In molten state  |               |  |  |
| Р              | 714                                                                              | Does not conduct | Conducts                | Conducts         | Very Soluble  |  |  |
| Q              | -95                                                                              | Does not conduct | Conducts                | Conducts         | Insoluble     |  |  |
| R              | 1083                                                                             | Conducts         | Conducts                | Conducts         | Insoluble     |  |  |
| S              | -101                                                                             | Does not conduct | Does not Conducts       | Does not conduct | Very soluble  |  |  |
| U              | -23                                                                              | 77               | Does not conduct        | Does not conduct | Soluble       |  |  |
| V              | -219                                                                             | -183             | Does not Conduct        | Does not Conduct | Insoluble     |  |  |
| W              | 1560                                                                             | 2600             | Does not Conduct        | Does not Conduct | Insoluble     |  |  |

Name two substances which are gaseous at room temperature. (i)

Select the substance that could be dissolved in water and be separated from the solution by Fractional distillation. (ii)

(iii) Which substance could be an electrolyte?

- (iv) Element U has low M.P and B.P whereas W has high M.P and B.P. Explain
- 2 The set-up below was used to prepare dry hydrogen chloride gas and investigate its effect on heated Iron fillings.



- a) (i) Name substance L. (1mk) (ii) Name liquid M. (1mk) (iii) What will be observed in tube B (1mk) (iv) Write an equation for the reaction that occurs in tube B. (1mk) Explain the following observations: b)
  - A while precipitate is formed when hydrogen chloride is passed through aqueous silver nitrate. (1mk) (i) (1mk)
  - (ii) Hydrogen chloride gas fumes in ammonia gas.

(iii) Hydrogen Chloride gas when dissolved in water forms hydrochloric acid. State 2 uses of hydrochloric acid.

(2mks)

(1mk)

(1mk)

(1mk)

.(2mks)



(i) I. Label parts A and B.

ions solution:

II Identify substance C.

(2 marks) (1mk)

|             |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chem                                 | istry 233/1,2&3   |
|-------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------|
| (ii)        | Write the equations of the reactions that t Anode:             | ake place at the electrodes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      | (2mks)            |
|             | Cathode                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                   |
| b)          | Study the standard electrode potentials gi                     | ven below and answer the question                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | is that follow.                      |                   |
|             | The letters do not represent the actual syr                    | nbols of the elements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |                   |
|             | Half reactions                                                 | Electrode potential E <sup>9</sup> V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1                                   |                   |
|             | $P'_{(aq)} + e - P_{(s)}$                                      | -2.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                    |                   |
|             | $\mathbb{R}^{3+}_{(aq)}+3e \longrightarrow$ $\mathbb{R}_{(s)}$ | -1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                   |
|             | $S^{2+}(aq)+2e \searrow$ $S_{(s)}$                             | -0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                   |
|             | $T^{2+}_{(aq)} + 2e^{-} = T_{(s)}$                             | +0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                   |
|             | $V_{(aq)}^{+}e^{-} \longrightarrow V_{(s)}$                    | +0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                   |
|             | $W_{2(g)}+2e = 2W_{-(aq)}$                                     | +1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                   |
|             |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                    |                   |
| (1)         | Which reducing agent.                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | $(1 \dots l_{r})$ |
|             | I Strongest reducing agent. Explain                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | (1mk)             |
| c)          | During electrolysis of an aqueous solution                     | $\alpha$ of a slat of metal $\Omega_{\alpha}$ a current of $\hat{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.04 was passed for 32 minutes an    | d 10 seconds      |
| C)          | The mass of metal O denosited was 2.24c                        | $(1 \ Faradav = 96500c \ RAM of O = 96500c \ $ | =112                                 | a to seconds.     |
| (i)         | Calculate the quantity of electricity passe                    | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5. S.                                | (2mks)            |
| (i)<br>(ii) | Calculate the charge on the ion of metal (                     | ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Der                                  | (2mks)            |
| 6.          | The flow chart below represents the extra                      | ction of zinc from its ore and by-p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | roduct used in the manufacture of s  | sulphuric (VI)    |
|             | acid. Study it and use it to answer the qu                     | estions that follow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0 <sup>25</sup> -                   |                   |
|             | Z                                                              | or Over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                   |
|             |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · ·                    |                   |
|             | <u>Cor</u>                                                     | (Centration)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                   |
|             | the air hast to                                                | IStud A 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                   |
|             | mor an paar Anag                                               | ing furage Reduthoin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inviten Zinc                         |                   |
|             | a                                                              | egners & dineire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D                                    |                   |
|             | A.5                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                   |
|             | ATY - + Cas                                                    | alyric diamer N Johansor L Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Jahansa N-                           |                   |
| (a)         | Name:-                                                         | et Pt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                   |
| (i)         | The suitable zinc ore used.                                    | 00°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | (1mk)             |
| (ii)        | The main impurity in the ore.                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | (1mk)             |
| D)<br>C)    | Write an equation for the reaction taking                      | place in the roasting furnace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      | (2mks)<br>(1mk)   |
| d)          | Describe what happens in the reduction c                       | hamber.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      | (2mks)            |
| e)          | Identify substances W,M                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | (2marks)          |
| f)          | Write the equation for the reaction that or                    | ccurs in chamber N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | (1mk)             |
| g)          | Explain why sulphur (VI) Oxide is not di                       | ssolved directly in water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      | (1mk)             |
| h)          | Explain the danger caused by this proces                       | s to the environment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      | (2mks)            |
| 7.          | A student assembled apparatus as shown                         | below to prepare Sulphur (IV) oxid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | de gas in the laboratory. Study it a | nd answer the     |
|             | questions that follow.                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                   |
|             | 76 Solution L                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                   |
|             |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                   |
|             | TALET                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                   |
|             |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                   |
|             |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                   |
|             | ( Sulphile                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                   |
|             | 6000                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                   |
|             |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                   |

(i) Complete the diagram to show how dry Sulphur (IV) Oxide can be collected.

(ii) By use of a chemical equation, explain why fused calcium oxide is not a suitable drying agent for Sulphur (IV) Oxide gas. (2mks)

(2mks)

(1mk) (1mk) (1mk) (1mk) (1mk)

b) Sulphuric (VI) acid is an important industrial reagent. It is manufactured by the contact process represented by the flow diagram below.



- Gas X Gas Y (ii) Write balanced chemical equations for the reactions taking place in catalytic chamber. (iii) State two uses of sulphuric (VI) acid.

NYERI CENTRAL **CHEMISTRY PRACTICAL** FORM 4 **PAPER 233/3 TIME: 2 HOURS CONFIDENTIAL** SUB-COUNTY EXAM

In addition to the apparatus found in chemistry laboratory, each student will require the following:

- 1.
- 2.
- About 100cm<sup>3</sup> of solution A. About 100cm<sup>3</sup> of solution B. About 100cm<sup>3</sup> of solution C. 3.
- 4. Burette
- 5. Pipette
- Pipette filler 6.
- Thermometer 0-110°C. 7.
- Two conical flasks 8.
- Volumetric flasks. 9.
- 10. Filter funnel
- 11. Distilled water 500cm<sup>3</sup>
- 12. 7 labels
- 13. 6 dry test tubes
- 14. 10ml measuring cylinder
- 15. 2 boiling tubes
- 16. 1 metallic spatula
- 17. 0.5g solid x
- 18. 0.5g NaHCO<sup>3</sup>.
- visit. www.freekcsepastpapers.com 19. About 4cm<sup>3</sup> absolute ethanol supplied in a stoppered container.
- 20. Solid P
- 21. 2 Litmus papers (1 blue and 1 red)

# Access to

- 2m ammonia solution supplied with a dropper. 1.
- 0.5m potassium iodide supplied with a dropper. 2.
- 1m Nitric (V) acid supplied with a dropper. 3.
- Acidified potassium manganate (VII) supplied with adropper. 4.
- 5. 0.1m lead(II) nitrate supplied with a dropper
- 6. Source of heat
- 2m H2SO4 supplied with a dropper. 7.
- Methyl orange indicator. 8.

# Note

- Solution A is prepared by dissolving 50cm<sup>3</sup> of 1.84g/cm<sup>3</sup> (98%) concentrated sulphuric (VI) acid in about 600cm<sup>3</sup> distilled \_ water and diluting to one litre of solution.  $(0.92M H_2SO_4)$ .
- Solution B is prepared by dissolving 8.0g per litre of sodium carbonate in about 500cm<sup>3</sup> distilled water and diluting to one \_ litre of solution  $(0.075M \text{ Na}_2 \text{ CO}_3)$ .
- Solution C is prepared by dissolving 60g of sodium hydroxide pellets in about 700cm<sup>3</sup> of distilled water and diluting to one litre of solution (1.5mNaOH).
- Solid P is a mixture of  $Pb(NO_3)_2$  and  $Na_2CO_3$  in a ratio of 2:1 respectively by mass.
- Solid X maleic acid (0.5g).

5

## NYERI CENTRAL **CHEMISTRY 233/3** FORM 4 (PRACTICAL) TIME: 2 ¼ HOURS

# You are provided with;

- Aqueous Sulphuric (VI) acid labelled solution A
- Solution B containing 8.0g per litre of anhydrous Sodium Carbonate.
- An aqueous solution of substance C labelled solution C.
- You are required to determine the:
- Concentration of solution A.
- Enthalpy of reaction between sulphuric (VI) acid and substance C.

# **A** Procedure

Using a pipette and a pipette filler, place 25.0cm<sup>3</sup> of solution A into a 250ml volumetric flask.

Add distilled water to make 250 cm<sup>3</sup> of solution.

Label this solution D.

Place solution D in a burette. Clean the pipette and use it to place 25.0cm3 of solution B into a conical flask. Add 2 drops of methyl orange indicator provided and titrate with solution D.

Record your results in table 1. Repeat the titration two more times and complete the table.

|       |                                                    |              |                | -C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N. C. |      |
|-------|----------------------------------------------------|--------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------|
|       |                                                    | Ι            | II             | III S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |      |
|       | Final burette reading                              |              |                | er.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |      |
|       | Initial burette reading                            |              |                | and and a second s |                                           |      |
|       | Volume of solution D used (cm <sup>3</sup> )       |              |                | Six                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |      |
|       | Calculate the:                                     |              |                | 2 <sup>0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (4                                        | mks) |
| (i)   | Average volume f solution D used.                  |              | C.             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1                                        | mk)  |
| (ii)  | Concentration of anhydrous Sodium Carbonate in     | 1 solution B | (Na=23.0, 0=16 | 5.0, C=12.0).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1                                        | mk)  |
| (iii) | Concentration of Sulphuric (VI) acid in solution   | D.           | 490            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1                                        | mk)  |
| (iv)  | Concentration of sulphuric (VI) acid in solution A | 4.           | N. 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1                                        | mk)  |

(iv) Concentration of sulphuric (VI) acid in solution A.

Ъ. Label six test tubes as 1,2,3,4,5 and 6. Empty the burette and fills with solution A from the burette place 2cm<sup>3</sup> of solution A b) into test-tube number 1. From the same burette, place 4cm<sup>3</sup> of solution A in test-tube number 2. Repeat the process for testtube nubmers 3,4,5 and 6 as shown in table 2. Clean the bureful and fill it with solution C. From the bureful place  $14 \text{ cm}^3$  of solution C into a boiling tube. Measure the initial temperature of solution C to the nearest 0.50C and record it in table 2. Add the contents of test-tube number 1 to the boiling tube containing solution C.

Stir the mixture with the thermometer. Note and record the highest temperature reached in table 2. Repeat the process with the other volumes of solution C given in table 2 and complete the table.(6mks)

| Test tube number                                 | 1  | 2  | 3  | 4 | 5  | 6  |
|--------------------------------------------------|----|----|----|---|----|----|
| Volume of solution A(cm <sup>3</sup> )           | 2  | 4  | 6  | 8 | 10 | 12 |
| Volume of solution C(cm <sup>3</sup> )           | 14 | 12 | 10 | 8 | 6  | 4  |
| Highest temperature of mixture (%)               |    |    |    |   |    |    |
| Highest temperature of mixture ( <sup>®</sup> C) |    |    |    |   |    |    |
| Change in temperature, $\Delta T(\)$             |    |    |    |   |    |    |

(i) On the grid provided, draw a graph of  $\Delta T$  (vertical axis) against volume of solution A used.

(ii) From the graph determine:

- Ι the maximum change in temperature.
- Π the volume of solution A required to give the maximum change in temperature. (1mk)
- (iii) Calculate the:
  - number of moles of sulphuric (VI) acid required to give the maximum change in temperature. Ι (1mk)
  - molar enthalpy of reaction between sulphuric (VI) acid and substance C in kilojoules per mole of sulphuric (VI) acid. Π Assume the specific heat capacity of solution is  $.2Jg^{-1}K^{-1}$  and density of solution is  $1.0g \text{ cm}^{-3}$ . (2mks)
- 2. You are provided with solid P. Carry out the tests below and record your observations and inferences in the tables provided.
- (i) Transfer a half spatula end full of solid P into a clean-dry test tube. Heat the solid strongly and test any gas produced using litmus papers

|         | Observations | Inferences |
|---------|--------------|------------|
|         |              |            |
|         | (1mk)        | (1mk)      |
| · • • ' |              |            |

(ii) Place the remaining solid P into a boiling tube. Add about 8cm<sup>3</sup> of distilled water and shake thoroughly. Filter the mixture into another boiling tube. Retain the filtrate for use in (iii) below.

Place the entire residue into a boiling tube. Add all Nitric (V) acid provided in a test tube labeled Z. Divide the resulting mixture into two portions.

(3mks)

(1mk)

(I) To the first portion in test tube add ammonia solution drop wise to excess.

| Observations | Inferences |
|--------------|------------|
|              |            |
| (1mk)        | (1mk)      |

(II) To the second portion in a test tube add two drops of potassium iodide.

| Observations | Inferences |
|--------------|------------|
|              |            |
| (1mk)        | (1mk)      |

(iii) I To 2cm<sup>3</sup> of the filtrate, add three drops of dilute Nitric (V) acid.

| Observations | Inferences |
|--------------|------------|
|              |            |
| (1mk)        | (1mk)      |
|              |            |

II To 2cm<sup>3</sup> of the filtrate add 3 drops of Lead (II) Nitrate solution.

iv

|       | Observations                                                                                                            | Inferences                                                    |       |  |  |  |
|-------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------|--|--|--|
|       |                                                                                                                         |                                                               |       |  |  |  |
|       | (1mk)                                                                                                                   | <b>C</b> (1mk)                                                |       |  |  |  |
| 3. Y  | ou are provided with solid X. Carry out the tests below and record your observations and inferences in the table below. |                                                               |       |  |  |  |
| (i) I | Place one spatula endful of solid x in a test tube and add abo                                                          | ut 10cm3 of distilled water Shake well and use for test (i) t | below |  |  |  |
|       | Observations                                                                                                            | Inferences                                                    |       |  |  |  |
|       |                                                                                                                         | 100 m                                                         |       |  |  |  |
|       | (1mk)                                                                                                                   | (1mk)                                                         |       |  |  |  |

(ii) To 2cm<sup>3</sup> of the solution in a test tube, add one spatula endful of sedum by drogen carbonate.

| Observations | Inferences |
|--------------|------------|
|              | . N        |
| (1mk)        | (1mk)      |
|              |            |

iii) To 2cm<sup>3</sup> of solution, add three drops of acidified potassium manganite (VII) solution.

|   | Observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Inferences                                                      |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|   | and the second se |                                                                 |
|   | (lmk)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1mk)                                                           |
| ) | Place about 4cm <sup>3</sup> of ethanol in a test tube and add two drops                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s of 2M sulphuric VI acid then add a spatula end ful of solid X |
|   | Warm the mixture carefully Shake well and pour the mixture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ure into $20 \text{ cm}^3$ of water in a beaker                 |

|   | warm the mixture eurorany. Shake wen and pour the mixte | are into 200m of water in a beaker. |
|---|---------------------------------------------------------|-------------------------------------|
|   | Observations                                            | Inferences                          |
|   | , <u>,</u> 00                                           |                                     |
|   | (1mk)                                                   | (1mk)                               |
| 1 |                                                         |                                     |

|                                                                                                                                                                                | Chemistry 233/1,2&3     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| MERU                                                                                                                                                                           |                         |
| 233/1                                                                                                                                                                          |                         |
| CHEMISTRY                                                                                                                                                                      |                         |
| PAPER I                                                                                                                                                                        |                         |
| (THEORY)                                                                                                                                                                       |                         |
| JULY/AUGUST 2017<br>TIME: 2 HOURS                                                                                                                                              |                         |
| 1 (a) When a condinate burnt completely, the total mass of product was found to be greater than the aria                                                                       | inal mass of the condle |
| Finlain                                                                                                                                                                        | (2 mks)                 |
| (b) What type of change has the candle way undergone?                                                                                                                          | (1 mk)                  |
| <ul> <li>(a) Identify the ions responsible for the hardness of water.</li> </ul>                                                                                               | (2  mks)                |
| (b) Name a method that can be used to remove permanent hardness from water.                                                                                                    | (1  mk)                 |
| 3. Explain why there is a general increase in the first ionization energies of the elements in period 3 of                                                                     | the periodic table from |
| left to right.                                                                                                                                                                 | (2 mks)                 |
| 4. Hydrogen gas is the lightest gas known but has not lived to it expectation to be used in observation bal                                                                    | loons. Explain          |
|                                                                                                                                                                                | (2 mks)                 |
| 5. M grammes of a radioactive isotope decayed to 5 grammes in 100 days. The half-life of the isotope is 2                                                                      | 25 days.                |
| (a) What is meant by half-life?                                                                                                                                                | (1 mk)                  |
| (b) Calculate the initial mass M of the isotope                                                                                                                                | (2 mks)                 |
| <ol> <li>During electrolysis, dilute sulphuric (VI) acid, the volume of hydrogen gas collected is twice the volu<br/>half acustions to justify the above statement.</li> </ol> | ime of oxygen gas. Use  |
| 7 The diagram below shows a charcoal burner when in use Study it and answer the questions that follow                                                                          | 1                       |
| 7. The diagram below shows a charcoar burner when in use. Study it and answer the questions that follow                                                                        |                         |
| >> Segion N                                                                                                                                                                    |                         |
| $\lambda = 2 + 2$                                                                                                                                                              |                         |
| Region P                                                                                                                                                                       |                         |
| Air Air                                                                                                                                                                        |                         |
| Ash Ash                                                                                                                                                                        |                         |
|                                                                                                                                                                                |                         |
| N.                                                                                                                                                                             |                         |
| (a) Write an equation for the reaction taking place at region P.                                                                                                               | (1 mk)                  |
| (b) State and explain the observation made at region N.                                                                                                                        | (2 mks)                 |
| <ol> <li>Both chlorine and iodine are halogens.</li> </ol>                                                                                                                     |                         |
| (a) To which group in the periodic table do they belong,                                                                                                                       | (1 mk)                  |
| (b) In terms of structure and bonding explain why the boiling point of chlorine is lower than that of io                                                                       | dine. (2 mks)           |
| 9. In an experiment to investigate the effect of solvention substances a student set the shown experiment.                                                                     |                         |
|                                                                                                                                                                                |                         |
|                                                                                                                                                                                |                         |
| Mixture of Mixture of                                                                                                                                                          |                         |
| Ethanoic acid and                                                                                                                                                              |                         |
| water bevane                                                                                                                                                                   |                         |
|                                                                                                                                                                                |                         |
| Sodium hydrogen                                                                                                                                                                |                         |
| carbonate carbonate                                                                                                                                                            |                         |
|                                                                                                                                                                                |                         |
| (a) Compare the rate of fizzing in the two tubes                                                                                                                               | (1 mk)                  |
| (b) Explain the observations in (a) above.                                                                                                                                     | (2  mks)                |
| 10. Study the flow chart below and use it to answer the questions that follow.                                                                                                 | 7=                      |
|                                                                                                                                                                                |                         |
| Cos W Cos V                                                                                                                                                                    |                         |
|                                                                                                                                                                                |                         |
| O2 Hast Coke hast                                                                                                                                                              |                         |
| ZnS 02, Heat ZnO Coke, heat Zn                                                                                                                                                 |                         |
|                                                                                                                                                                                |                         |
| Step 1 Step 2                                                                                                                                                                  |                         |
| Step 3   Conc. H <sub>2</sub> SO <sub>4</sub>                                                                                                                                  |                         |
| •                                                                                                                                                                              |                         |
| ZnSO <sub>4</sub> + H <sub>2</sub> O + Gas Y                                                                                                                                   |                         |
|                                                                                                                                                                                |                         |
|                                                                                                                                                                                | 2.0                     |
| (a) Write an equation for the reaction taking place in step 1                                                                                                                  | (1 mk)                  |
|                                                                                                                                                                                | Develope                |

Page | 345

|                                                                                                                                             | Chem                                              | istry 233/1,2&3     |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------|
| (b) Identify gas X                                                                                                                          |                                                   | (1 mk)              |
| (c) Name one use of zinc.                                                                                                                   |                                                   | (1 mk)              |
| 11. (a) Compare rusting and combustion.                                                                                                     |                                                   | (2  mks)            |
| (b) Give one advantage of rusting and compusiton.                                                                                           | as reacted with dilute sulphuric (VI) acid        | (1 mk)              |
| (a) What would be the effect of an increase in the concentrat                                                                               | ion of the acid on the rate of reaction?          | (1 mk)              |
| (b) Explain why the rate of reaction is found to increase with                                                                              | i temperature.                                    | (2 mks)             |
| 13. The table below shows the first ionization energies of elemen                                                                           | ts D and E.                                       |                     |
| Element                                                                                                                                     | Ionisation energy kJ/mol                          |                     |
| D                                                                                                                                           | 494                                               |                     |
| E                                                                                                                                           | 736                                               | (2                  |
| (a) what do these values suggest about the reactivity of D co<br>14 Starting with 50 cm <sup>3</sup> of 2M sodium hydroxide, describe how s | Impared to that of E. Explain.                    | (2 MKS)<br>prepared |
| 14. Starting with Steries of 2W southin hydroxide, describe now a                                                                           | a sample of pure social suphate crystals can be   | (3 mks)             |
| 15. The graph shown is of the relationship between pressure and                                                                             | the temperature of a fixed volume of a gas.       | (0 11113)           |
| ↓ · · · · · · · · · · · · · · · · · · ·                                                                                                     |                                                   |                     |
|                                                                                                                                             |                                                   |                     |
|                                                                                                                                             |                                                   |                     |
|                                                                                                                                             |                                                   |                     |
| Pressure                                                                                                                                    | m                                                 |                     |
| $(\mathbf{P}_{\mathbf{a}})$                                                                                                                 | CO.                                               |                     |
|                                                                                                                                             | - ets.                                            |                     |
|                                                                                                                                             | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~            |                     |
|                                                                                                                                             | gill                                              |                     |
|                                                                                                                                             | 200                                               |                     |
|                                                                                                                                             |                                                   |                     |
| Temperature ( <sup>0</sup> C)                                                                                                               | ot                                                |                     |
|                                                                                                                                             | . the                                             |                     |
| (a) State the relationship between pressure and temperature t                                                                               | hat can be deduced from the graph                 | (1  mk)             |
| (b) Using kinetic theory explain the relationship shown in the                                                                              | ha ean be deddeed nom me graph.                   | (1  mk)<br>(2 mks)  |
| 16. When 8.53 of sodium nitrate were heated, the mass of oxyger                                                                             | produced was 0.83g. Given the equation of the r   | eaction as          |
| $2NaNO_{3(s)} \rightarrow 2NaNO_2 + O_{2(g)}$                                                                                               |                                                   |                     |
| Calculate the percentage of sodium nitrate that was converted                                                                               | to sodium nitrite.                                | (3 mks)             |
| (Na = 23, O = 16, N = 14)                                                                                                                   |                                                   |                     |
| 17. Diagramatic representation of the Frasch process used to extra                                                                          | act sulphur is shown below.                       |                     |
| 9 <sup>0</sup>                                                                                                                              |                                                   |                     |
|                                                                                                                                             |                                                   |                     |
|                                                                                                                                             |                                                   |                     |
|                                                                                                                                             |                                                   |                     |
|                                                                                                                                             |                                                   |                     |
|                                                                                                                                             |                                                   |                     |
|                                                                                                                                             |                                                   |                     |
|                                                                                                                                             |                                                   |                     |
|                                                                                                                                             |                                                   |                     |
|                                                                                                                                             |                                                   |                     |
|                                                                                                                                             |                                                   |                     |
| Sulphur deposits                                                                                                                            |                                                   |                     |
|                                                                                                                                             |                                                   |                     |
| 1 .                                                                                                                                         |                                                   |                     |
| Identify the substances that nesses through nines 1.2 AND 2                                                                                 |                                                   |                     |
| 18 Nitrogen is isolated from the air by removing carbon (IV) ovi                                                                            | de and oxygen                                     |                     |
| (a) Explain how each is removed.                                                                                                            | av una oxygon.                                    | (2 mks)             |
| (i) Carbon (IV) oxide                                                                                                                       |                                                   |                     |
| (ii) Oxygen                                                                                                                                 |                                                   |                     |
| (b) Give the confirmatory test for nitrogen gas.                                                                                            |                                                   | (1 mk)              |
| 19. (a) When excess chlorine gas was bubbled into hot concentra                                                                             | tted sodium hydroxide, the following reaction occ | curs.               |
| $3\text{Cl}_2 + 6\text{NaOH}_{(aq)} \rightarrow \text{NaClO}_{3(aq)} + 5\text{NaCl}_{(aq)} + 3 \text{ H}_20_{(1)}$                          |                                                   |                     |
| In which product did chlorine undergo oxidation. Explain                                                                                    | 1                                                 | (2 mks)             |
| (b) Give one use of chlorine.                                                                                                               |                                                   | (1 mk)              |
|                                                                                                                                             |                                                   | Page   346          |
|                                                                                                                                             |                                                   |                     |

Page | 347

- 20. Copper (II) sulphate reacts with barium chloride according to the equation.  $CuSO_{4(aq)} + BaCl_{2(aq)} \rightarrow CuCl_{2(aq)} + BaSO_{4(s)}$  $\Delta H = -17.1 kJ/mole$ Calculate the temperature change when 900cm3 of 1M copper (II) sulphate were added to 600cm<sup>3</sup> of 1M Barium chloride. (Assume heat capacity is  $4.2 \text{Jg}^{-1} \text{k}^{-1}$  and density  $1 \text{g/cm}^{3}$ (3 mks)
- 21. Four metals A, B, C and D were each reacted with cold water, hot water and steam and the observations recorded.

| Metal | Cold water    | Hot water         | Steam              |
|-------|---------------|-------------------|--------------------|
| Α     | Reacts slowly | Reacts first      | Reacts very first  |
| В     | No reaction   | No reaction       | No reaction        |
| С     | Fast          | Reacts very first | Reacts explosively |
| D     | No reaction   | Reacts slowly     | Reacts fast        |

Arrange these metals in order of reactivity

22. The structure of a detergent can be represented

 $R - COO^{-}Na^{+}$ 

- (a) What type of detergent is represented by the formula
- (b) Explain how the detergent improves the cleaning property of water
- 23. Samples of urine from three athletes J, K and L were spotted onto a chromatography paper alongside two from illegal drugs  $D_1$  and  $D_2$  shown. w.treekcsepastpapers.com



(a) Identify the athlete who had taken an illegal drug

- (b) On the paper mark the solvent front.
- (c) Which drug is most soluble.
- 24. (a) What name is given to the compound that acts as an acid and also like a base.
- 25. The table below gives the solubilities of substances R, S and T at different temperatures.

|     |                  |                          |                 | .6                          |                                |                              |
|-----|------------------|--------------------------|-----------------|-----------------------------|--------------------------------|------------------------------|
|     | Substance        | Solubility at            |                 | e                           |                                |                              |
|     |                  | 0°C                      | 2               | $20^{\circ}C$               | $40^{\circ}\mathrm{C}$         | 60°C                         |
|     | R                | 0.334                    | et Y            | 0.16                        | 0.074                          | 0.0058                       |
|     | S                | 27.60                    | A.              | 34.0                        | 40.0                           | 45.5                         |
|     | Т                | 35.70                    |                 | 36.0                        | 40.0                           | 37.3                         |
|     | (a) What is solu | ubility                  | 310             |                             |                                | (1 mk)                       |
|     | (b) A saturated  | solution of S was coo    | led from 60°C   | C to 20 <sup>0</sup> C. Sta | te and explain what happens.   | (2 mks)                      |
| 26. | Describe how in  | the laboratory you ca    | n obtain the p  | oH of solid so              | dium hydroxide.                | (3 mks)                      |
| 27. | The figure below | v shows the interconv    | ersion of the 3 | 3 states of ma              | tter.                          |                              |
|     |                  |                          | 1 117           |                             |                                | (2                           |
|     | (a) Give names   | s of the processes v an  | a w             |                             |                                | (2  mks)                     |
|     | (b) Name a sub   | stance that can underg   | go process X v  | when left in a              | n open container.              | (1 mk)                       |
| 28. | Biogas is a mixt | ure of mainly carbon     | (IV) oxide an   | d methane.                  |                                |                              |
|     | (a) Give a reaso | on why biogas can be     | used as a fuel  | l <b>.</b>                  |                                | (1 mk)                       |
|     | (b) Other than   | fractional distillation, | describe a m    | nethod that ca              | n be used to determine the per | centage of methane in biogas |
|     |                  |                          |                 |                             | -                              | (2 mks)                      |

29. Carbon (IV) oxide, methane, nitrogen (I) oxide and trichloroflouromethane are green – house gases. State one effect of an increased level of these to the environment. (1 mk)

(1 mk)

(3 mks)

(2 mks)

(1 mk)

(1 mk)

(1 mk)

(1 mk)



|                                   | Addition of aqueous ammonia |                |  |
|-----------------------------------|-----------------------------|----------------|--|
| Cation                            | Little                      | Excess         |  |
| $A^{3+}$                          | White precipitate           | Insoluble      |  |
| $B^{2+}$                          | No precipitate              | No precipitate |  |
| $C^{2+}$                          | White precipitate           | Soluble        |  |
| Which cation is likely to be Zn2+ |                             | (1 mk)         |  |

(i)



Page | 349

|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chemistry 233/1,2&3 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| -  | (i) Name the compounds P and Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (2 mks)             |
|    | (ii) Draw the structural formula of compound K showing two repeat units.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (1 mk)              |
|    | (iii) Give the reagent and condition used in step 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (2 mks)             |
|    | (iv) State the types of reaction that takes place in:-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
|    | L Step 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
|    | II. Step 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |
|    | (d) The molecular formula of compound R is C <sub>2</sub> H <sub>2</sub> Cl <sub>4</sub> . Draw two structural formulae of compound R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (2 mks)             |
|    | (e) Give 2 uses of ethanol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (2 mks)             |
| 6. | (a) Use the standard electrode potentials for A, B, C, D and F given below to answer the questions that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | follow.             |
|    | $A^{2+}{}_{(aq)} + 2e^{-} \rightarrow A_{(s)} -2.90V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|    | $B^{3+}_{(aq)} + 3e^{-} \rightarrow B_{(s)}$ -2.38V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
|    | $C^+_{(a)} + e \rightarrow C_{(a)} = 0.00V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
|    | $D^{2+}(x_0) + 2e^2 \rightarrow D(x_0)$ +0.34V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
|    | $\frac{1}{\sqrt{4}} = \frac{1}{\sqrt{4}} = 1$ |                     |
|    | (i) What is E value for the strongest reducing agent?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1 mk)              |
|    | (ii) Draw a well-labelled diagram of the electro-chemical cell that would be obtained when half cells of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | elements "B" and    |
|    | (i) Draw a went tabeled diagram of the electro element centual would be obtained when han centro of "D" are connected then calculate its $F^{\theta}$ cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (4 mks)             |
|    | (iii) Explain whether the following reaction can take place                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1 mk)              |
|    | $2F_{+} + 2C_{+} \rightarrow E_{+} + 2C_{+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (r may              |
|    | (b) The set un below was used to electrolyze molten lead (11) indide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |
|    | Molten Lead (II) Iodide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
|    | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
|    | (i) On the diagram label cathode and anode and also show the direction of electrons flow.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3 mks)             |
|    | (ii) State and explain the observations made at the anode during the electrolysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (2 mks)             |
|    | (iii) A current of 0.5A was passed for two hours. Calculate the mass of lead that was deposited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
|    | (Pb = 207, Harady = 96500C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (3 mks)             |
|    | (c) Explain the changes that occur in a solution and at the electrodes in the electrolysis of copper (II) su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lphate. (2 mks)     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
|    | St.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
|    | 2 <sup>0</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
|    | NIST.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|    | $\sqrt{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
|    | 40`                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |

(1 mk)

(2 mks)

# **MERU** 233/3 **CHEMISTRY** PAPER 3

- You are provided with 1.
- $\checkmark$ Solution A which is 0.2M Sodium Hydroxide
- $\checkmark$ Solution B which is dilute Sulphuric (VI) Acid
- $\checkmark$ Solution C which is a metal carbonate  $M_2CO_3$  which is made by dissolving 2.65g of the salt in 250cm<sup>3</sup> distilled water. You are required to standardize sulphuric acid then determine the R.A.M of metal M.
- I. Procedure
- (i) Fill the burette with dilute sulphuric acid, solution B.
- (ii) Pipette 25 cm<sup>3</sup> of sodium hydroxide, solution A into a flask.
- (iii)Add 3 drops of phenolphthalein indicator then titrate it with solution B.
- (iv)Record your results in the table below.
- (v) Repeat the titration twice to obtain consistent results.

|     |                                               | 1    | 2  | 3       |
|-----|-----------------------------------------------|------|----|---------|
|     | Final burette reading (cm <sup>3</sup> )      |      |    |         |
|     | Initial burette reading (cm <sup>3</sup> )    |      |    |         |
|     | Volume of solution B (cm <sup>3</sup> )       |      |    |         |
| (a) | Determine the average volume of acid B used.  |      |    |         |
| (b) | Calculate the moles of NaOH used in the react | ion. | 20 | (2 mks) |

- (b) Calculate the moles of NaOH used in the reaction.
- (c) Calculate the moles of H2SO4 used in the titration.
- (d) Calculate the morality of H2SO4.
- Procedure II
- i. Fill a clean burette with solution B.
- ii. Pipette 25cm3 solution C and add 3 drops of phenolphthalein then titrate it with solution B from the burette.
- iii. Record your result in the table given.

|     |                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N <sup>1</sup> | 3       |
|-----|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------|
|     | Final burette reading (cm <sup>3</sup> )        | L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>5</b>       |         |
|     | Initial burette reading (cm <sup>3</sup> )      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |         |
|     | Volume of solution B (cm <sup>3</sup> )         | n n n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |         |
| (e) | Calculate the average volume of B used.         | and the second sec | (              | 1 mk)   |
| (f) | Write the equation for the reaction between the | acid and metal carbonat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e. (           | (1 mk)  |
| (g) | Calculate the number of moles of acid solution  | B. 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | (2 mks) |
| (h) | Calculate the moles of Mcarbonate that reacted  | l with H2SO4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (              | 2 mks)  |
| (i) | Calculate the morality of the metal carbonate.  | OOX .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (              | 2 mks)  |
| (j) | Find the R.A.M of metal M ( $C = 12, O = 16$ )  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | (4 mks) |

- 00 2. You are provided with solid R. Carry out the tests below and write your observation and inferences in the spaces provided.
- (a) Place about half of the solid in a cleandry test tube. Heat it strongly. Test any gas produced using lime water on a glass rod and litmus paper. .07

|                                                                                                    | Observations 🖉                                                              | Inferences                                                 |  |  |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------|--|--|
|                                                                                                    | (1 mk)                                                                      | (1 mk)                                                     |  |  |
| (b) (i) Pla                                                                                        | ace the rest of solid R in a boiling tube. Add about 10cm <sup>3</sup> dist | illed water, shake well then filter. (Reserve the residue) |  |  |
|                                                                                                    | Observations                                                                | Inferences                                                 |  |  |
|                                                                                                    | (1 mk)                                                                      | (1 mk)                                                     |  |  |
| (ii) Use 2c                                                                                        | m3 portion of the titrate and add aqueous sodium hydroxide                  | until in excess.                                           |  |  |
|                                                                                                    | Observations                                                                | Inferences                                                 |  |  |
|                                                                                                    | (1 mk)                                                                      | (1 mk)                                                     |  |  |
| (iii) To $2cm^3$ of the filtrate add 3 drops of barium chloride followed by $2cm^3$ of $2MHNO_3$ . |                                                                             |                                                            |  |  |
|                                                                                                    | Observations                                                                | Inferences                                                 |  |  |
|                                                                                                    | (1 mk)                                                                      | (1 mk)                                                     |  |  |
| (c) (i) Put the residue in a boiling tube, add 8cm3 of 2M nitric acid and shake well.              |                                                                             |                                                            |  |  |
|                                                                                                    | Observations                                                                | Inferences                                                 |  |  |
|                                                                                                    | (1 mk)                                                                      | (1 mk)                                                     |  |  |
| (ii) To 2cm3 portion of the solution add aqueous ammonium hydroxide dropwise until in excess.      |                                                                             |                                                            |  |  |
|                                                                                                    | Observations 1 mark                                                         | Inferences 1 mark                                          |  |  |
| (iii) To another 2cm3 portion add all solid V provided and shake.                                  |                                                                             |                                                            |  |  |
| C                                                                                                  | Dbservations                                                                | Inferences                                                 |  |  |