NAME	INDEX NO:	• • • • • • • • • • • • • • • • • • • •
CANDIDATE'S SIGNATURE	DATE	• • • • • • • • •
233/2 CHEMISTRY THEORY		
Paper 2		
SEPT. 2017		
Time: 2 Hrs		

KIKUYU SUBCOUNTY JOINT KCSE TRIAL **EXAMINATION SEPTEMBER 2017**

INSTRUCTIONS TO CANDIDATES

- Write your Name and Index No. in the spaces provided.

- working must be clearly shown where necessary.

 Mathematical tables and silent electronic calculators may be used.

EXAMINERS USE ON

QUESTION	MAXIMUM SCORE	CANDIDATES SCORE
1	13	
2	11 wh	
3	13	
4	11 113	
5	12	
6	10	
7	100	
Total	80	

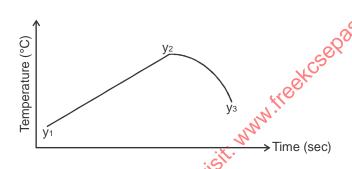
This paper consists of 10 printed pages. Candidates should check the question paper to ensure that all pages are printed as indicated and no questions are missing

1. The grid below shows part of the periodic table. Use it to answer the questions that follow. The letters do not represent actual symbols.

							S	U	V
	P	R					T		W
	Q								
(a) Which	h of	the e	lements has the l	nighe	st ato	omic	radin	ıs? E	xnlair

(a)	Which of the elements has the highest atomic radius? Explain	(2 marks)
(b)	Identify the most reactive non-metal. Explain	(2 marks)
(c)	Give the electron configuration of:	(2 marks)
(i)	Element S	
(ii)) Element Q	
(d)	Compare the atomic radius of P and R. Explain	(2 marks)
	Settle .	•••••
(e)	Given that the atomic mass of W is 40. Write down the composition of its nucleus.	(1 mark)
	······································	
(f)	Write the formula of the compounds formed between:	
(i)	Element P and S	(1 mark)
(ii)	Element R and T	(1 mark)
	Give the formula of one stable ion with an electron arrangement of 2.8 which is:	•••••
(i)	Negatively charged	(1 mark)
(ii)	Positively charged	(1 mark)
	Aqueous potassium sulphate was electrolysed using platinum electrodes in a cell.	
(i)	Name the products formed at the anode and cathode with the help of an equation.	(2 marks)
	Anode	
	Cathode	
	Why would it not be advisable to electrolyze aqueous potassium sulphate using potassium m mark)	

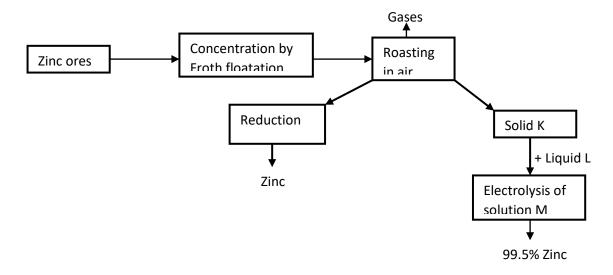
2.


(IN III-a discrete devil al astro de material al	for alamanta A. D. C. D. and E. Saran halamata an	
questions that follow.	for elements A, B, C, D and F given below to ar	iswer the
4	Eθ (Volts)	
$A \stackrel{2+}{(Aa)} + 2e \stackrel{\frown}{\frown} A_{(s)}$	-2.90	
$B \frac{2+}{(Aq)} + 2e^{-} \longrightarrow B_{(s)}$	-2.38	
$2C(Aq) + 2e$ $C_{2(g)}$	0.00	
$D_{(Aq)}^{2+} + 2e \longrightarrow D_{(s)}$	+0.34	
$\frac{1}{2}F_{2(g)} + e^{-}$ F-(aq)	+2.87	
(i) Which element is likely to be hydro	gen? Explain	(1 mark)
		•••••
		•••••
	com	
(ii) What is the E^{θ} value of the stronges	t reducing agent?	(1 mark)
	led diagram of the electrochemical cell that would	
cells of elements B and D are combined		(3 marks)
	1100	
	ar.	
	ik:	
	e vis	•••••
(iv) Calculate the E^{θ} value of the electr	ochemical cell constructed in (iii) above	
(iv) Calculate the E-value of the electr	chemical cen constructed in (iii) above	(1 mark)
e V		
- Ale		
(c) During electrolysis of aqueous copp was passed through the cell for 5 ho	per (II) sulphate using copper electrodes, a curren	
(i) Write an ionic equation for the re-	eaction that took place at the anode	(1 mark)
(ii) Determine the change in mass o (Cu = 63.5, 1 Faraday =	f the anode which occured as a result of electroly 96500C)	vsis.(1 mark)

	State two reasons why wood charcoal is not the best fuel for cooking.	(1 mark)
ii		
b)	The diagram below represents a set up that was used to determine the molar heat of combustion ethanol.	ı of
	Thermometer Metallic container Water Lamp Tripod stand	
	During the experiment the data given below was recorded: Volume of water = 450cm ³ Initial temperature of water = 24.0°C Final temperature of water = 45.5°C Mass of ethanol + lamp before burning = 113.5g Mass of ethanol + lamp after burning = 112.0g	
I.	Calculate the: i)Heat evolved during the experiment (density of water = 1g/cm ³ , specific heat capacity of water (2 ma	arks)
	ii) Molar heat of combustion of ethanol. (C = 12.0 , O = 16.0 , H = 1.0) (1½ 1.0)	marks)
II.	Write the thermochemical equation for the complete combustion of ethanol.	
	(O) 1	
	. The value of the molar heat of combustion of ethanol obtained in b(ii) above is lower than the tlue. State two reasons which lead to this.	neoretical (2 marks
val		(2 marks
		• • • • • • • • • • • • • • • • • • • •

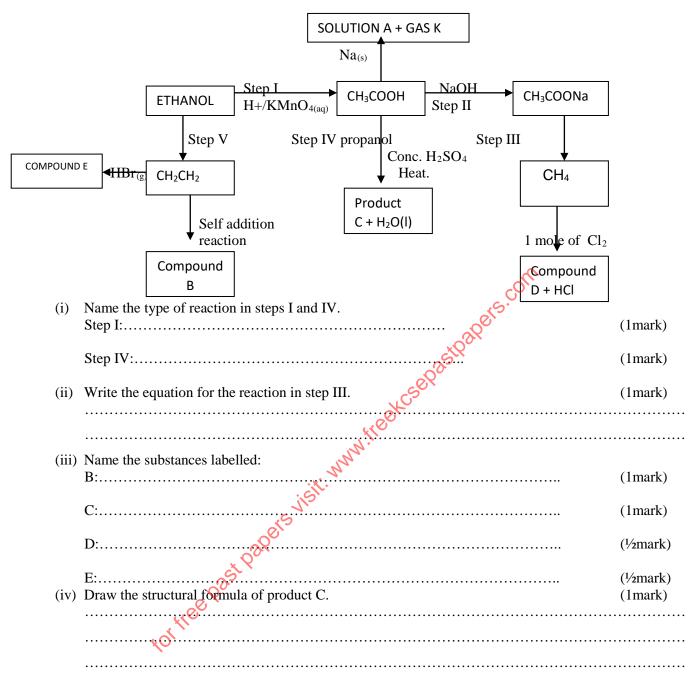
In order to determine the molar enthalpy of neutralization of sodium hydroxide, 50cm³ of 2M sodium hydroxide and 50cm³ of 2M hydrochloric acid both at the same initial temperature were mixed and stirred continuously with a thermometer. The temperature of the resulting solution was recorded after every 15 seconds until the highest temperature of the solution was attained. Thereafter the temperature of the solution was recorded for a further two minutes.

The sketch below was obtained when the temperature of the mixture were plotted against time. Study and answer the questions that follow.



i) What is the significance of point y₂ (1 mark)
 ii) Explain why there is a temperature change between points y₁ and y₂ (1 mark)

tol Kilos


iii) Explain how the value of temperature rise obtained in this experiment would compare with the one that would be obtained if the experiment was repeated using 50cm³ of 2M methanoic acid instead of hydrochloric acid. (2 marks)

4. Study the following reaction scheme for the extraction of zinc metal and then answer the questions that follow.

(a)	(i) Name two chief ores from which zinc can be extracted	(2 marks)
	in the second se	
	(ii) Write the equations for the reaction that take place at the roasting chamber.	(2 marks)
	510 ²⁰	
(b)	(i) Name the reducing agents used in the reduction chamber.	(1 mark)
	(ii) Write the equations for the reduction process to obtain zinc	(2 marks)
	and:	
(c)	Identify the following:	(3 marks)
	Solid K	
	Liquid L	
	Identify the following: Solid K Liquid L Solution M.	
(d)	State two uses of zinc metal.	(1 mark)
5.(a) (Give the systematic names of the following organic compounds: (i) CH ₃ CH ₂ CCH ₂ (1mar	k)
	CH ₃	
	(ii) CH ₂ BrCCH	(1mark)

(b) The scheme below shows a series of reactions starting with ethanol. Study it and answer the questions that follow.

(c) The scheme below was used to prepare a cleansing agent. Study it and answer the questions that follow.

	Fat	Heat Step 1	Solution of cleansing a and an alkano	gent	
i)	What is the name given to	to the type of cleans	ing a Solid cleansing agent	shown above?	(1mark)

NaOH(aq)

	ne (n		3\			0			1			2		_	3		5			7	_	10			13		14	_	16	_
	lume (i)		e gric	l bel	ow,	dra		ı gı	10 aph		Î V		7.5 ime		26 Hy	dro	gen		as 1	55.		67 ed a			72 t ti	me.	72	nar	72 ks)	
,				##	₩,			 	P									- B.		#					Ш					Ħ
												#																		
																			H											Ħ
																														Ħ
					+++	##				#		#	##		#	#			H	##					~			 #		#
				\mathbf{H}	H			Ħ		Ħ		Ħ					\blacksquare			\blacksquare	Ħ	Ħ		Ø	7		\blacksquare	Ħ		#
																							X			\boxplus				\sharp
		++++						##		#		#				#		#	##				#		H					#
																				d	9									$\frac{\mathbb{H}}{\mathbb{H}}$
												Ħ						-	5							Ħ				Ħ
												H					Q													Ħ
																7														$\frac{\mathbb{I}}{2}$
						##		#	-	#		#			747															#
												H																		Ħ
											ار		2																	#
										c	ट्रो																			#
									, C																					Ŧ
								Ø	O T																					∄
							8					#																		#
					7							Ħ							H	\prod										#
					M					\blacksquare		Ħ																		Ħ

On the same axes, sketch an approximate curve that would be obtained if the 5g of the zinc powder (iv) were reacted with excess 0.1M sulphuric (VI) acid. (1mark) (b) Study the following system in equilibrium. $Br_{2(aq)} \ + \ H_2O_{(\overleftarrow{B_{\leftarrow}})} \longrightarrow OBr^{-}_{(aq)} \ + \ Br^{-}_{(aq)} \ + \ 2H^{+}_{(aq)}$ State and explain the observation noted when potassium hydroxide is added to these systems. (2marks) (c) When concentrated nitric (v) acid was reacted with copper turnings a dark brown gas is collected. With the aid of a chemical equation, state and explain the observation made when the gas collected is cooled in cold water. (2marks) 7.A student set up the apparatus shown below to prepare and collect dry carbon (IV) oxide gas. Dilute H₂SO₄ acid Calcium carbonate ConOH₂SO_{4(I)} (a) State a correction for three mistakes in the set up above (3 marks) (b) Give two reasons why carbon (IV) oxide is used as a fire extinguisher (1 mark) (c) The flow chart below is for the manufacture of sodium carbonate by the Solvay process. Use it to answer the questions that follow. Brine Ammoniacal Tower Filter **9** | Page Gas Q Chamber G

Solution

Solid X

Heating

limestone

Gas M

(i) Name gas	s M		and (Q			(1 r	nark)
(ii) Name solu	ution F		and s	solid X			(1	mark)
(iii) Name the	e product L						(1 m	ark)
(iV) give one	e uses of L				• • • • • • • • • • • • • • • • • • • •		(1	mark)
(v) Write (1 mark)	•	of		reactions	in	Tower	Chamber	K
					XQ ⁰			
(v) Name the	two raw materia	ls required	in the mar	nufacture of sodi	um carbor	nate	(1 mar	k)
				ekos				
This is the last pi	rinted page		SVISIT	in				
		astpa	Serz					
	ed free	290						