NAME: \qquad
SCHOOL: \qquad DATE:

232/1

PHYSICS

PAPER 1
TIME: 2 HOURS

INDEX NO: \qquad

INSTRUCTIONS TO THE CANDIDATES:

1. This paper consists of TWO SECTIONS A and B
2. Answer ALL questions in the spaces provided.
3. ALL working MUST be clearly shown.

For Examiners' Use Only

SECTION	QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE			
I	$1-11^{\circ}$ S	25				
II	12	10				
	413	10				
	14	11				
	15	10				
	16	14				
TOTAL SCORE					$\mathbf{8 0}$	

SECTION I (25 MARKS)

1. Figure 1 below shows a portion of a micrometer screw gauge used to measure the diameter of a metal pipe. The reading on the gauge when the jaws were fully closed without the pipe was 0.012 cm

Figure 1

What is the length of the pipe?
2. A bimetallic strip is made from aluminium and copper. Whentheated it bends as shown in Figure 2 for the same temperature rise.

Figure 3

Draw a diagram showing the bînetallic strip after it is cooled below room temperature. (2 mks)
3. Explain the causes of random motion of pollen grains suspended in water as observed in Brownian motion.
\qquad
\qquad
\qquad
\qquad
4. State two ways in which the stability of a body can be increased.
\qquad
\qquad
5. A piece of glass weighs 1.02 N in alcohol and 1.50 N in air. If the density of glass is $2.5 \mathrm{~g} / \mathrm{cm}^{3}$.

Determine the relative density of alcohol.
6. The figure $\mathbf{3}$ below shows a velocity time graph for a racing car.

Figure 3

What is the total distance traveled by the car?
7. Explain why a liquid and not a gas is used as a hydraulic brake fluid.
\qquad
\qquad
8. Figure 4 below shows a soap film formed on a metal ring and a loop of thread inside it.

Figure 2
Explain what will happen when the film is punctured at x
\qquad
\qquad
\qquad
9. (a) State Pascal's principle.
\qquad
\qquad
\qquad
(b) Explain why when air enters Bydraulic brake systems the brake fails to work.
\qquad
\qquad
\qquad
10. State three factớs which determine the thermal conductivity in a material.
\qquad
\qquad
\qquad
\qquad
11. The figure below shows a metal rod AB of length 2 m horizontally balanced while supported by a pivot and a string.

Determine the mass of the metal rod if the tension is 15 N .
(b) State the type of equilibrium represented in the figure 6 below.

\qquad
\qquad

SECTION B 55 MKS

Attempt all Questions in this section.

12. (a) State Archimedes' principal
\qquad
\qquad
(b) A block of length 40 cm , cross-sectional area of $4 \mathrm{~cm}^{2}$ and density $1.2 \mathrm{~g} / \mathrm{cm}^{3}$ is completely immersed in a liquid of density $1.03 \mathrm{~g} / \mathrm{cm}^{3}$ find
(i) The mass of the block
(ii) The weight of the block in the liquid.
(iii) The apparent loss in weight of the block if three quarter of it is immersed in the liquid
13. The graph below shows how the temperature of a substance was changing with time when warmed by an electric heater which supplied 100 Joules per second.

(a) How much time in seconds is taken by the heater to rise the temperature of the substance from $-25^{0} \mathrm{C}$ to $0^{\circ} \mathrm{C}$.
(b) How much thermal energy is supplied into the substance along AB ?
(c) Determine the specific heat capacity of the substance if its mass is 0.095 kg .
(d) What happened to the heat supplied along BC?
\qquad
...
(e) Calculate the specific latent heat of fusion of the substance
14. (a) Define centripetal force.
\qquad
(b) An object of mass 6.5 kg is attached to one end of a light inextensible string and whirled up in vertical circle of radius 1.0 m and centre O as shown in figure 7 below such that the lowest point A is at the height of 4 m from the ground.

Figure 7

If the tension on the string when the object is at the lowest point A is 13.0 N , calculate.
(i) The velocity V of the object.
(ii) The tension on the string when the object is at the
I. Highest point C of ffhe circle.
II. Point B of the circle
(iii) If the string was to break when the objects is at the lowest point A of the circle.
I. Sketch on the diagram the path traced by the object until it hits the ground.
II. Determine the horizontal distance moved by the stone from the time it leaves the path until it hits the ground.
15. a) What is an ideal gas?
\qquad
\qquad
b) State the pressure law for an ideal gas.
\qquad
c) Figure 8 below shows a simple set-up to verify the pressure law.

i) State allf the measurement to be taken in the above experiment.
\qquad
\qquad
\qquad
ii) Explain how results from the experiment can be used to determine the pressure law
\qquad
\qquad
\qquad
d) A mass of a gas has a vole of $200 \mathrm{~cm}^{3}$ at room temperature of $-74^{\circ} \mathrm{c}$ and a pressure of 1
atmosphere. What is its volume at a pressure of 3 atmosphere and a temperature of $27^{\circ} \mathrm{C}$?
16. (a) An object is thrown vertically upward with a velocity of $150 \mathrm{~m} / \mathrm{s}$. (Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2-}$) Calculate
(i) Its velocity after 4 seconds
(ii) The distance covered in the first 5 seconds.
(iii) Maximum height reached.
(iv) Time taken to reach the maximum height.
(b) The vertical column of water issuing from a fountain is found to be 2.45 m . Determine the velocity with which water issues from the foundation.

