NAME:	INDEX NO	ADM NO
	Signature	•

232/2

PHYSICS PAPER 2 TIME: 2 HRS.

232/2

TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

In the spaces provided.

Consists of sections A and B.

All workings must be clearly shown.

Mathematical tables and electronic calculators may be used.

Speed of light = 3.0 X108ms⁻¹, Density of week.

FOR EXAMINER'S USE ONLY:

SECTION	QUESTION	MAXIMUM SCORE	STUDENT'S SCORE
	5,		
A	OEL		
	1-12	25	
	Q 13	13	
	14 14	17	
В	15	11	
	16	14	
TOT	AL SCORE	80	

SECTION A (25 MARKS)

1. State ONE similarity and ONE difference between a camera and a human eye.	(2 mks)
2. A girl standing 200m from the foot of a high wall claps her hands and the echo reach	nes her 1 16
seconds later. Calculate the velocity of sound in air using this observation.	(3 mks)
*toapers.com	
3. Calculate the effective capacitance of the capacitors shown in figure 1 across points	X and Y.
X — Figure 1	(2 mks)
4. A converging lens forms an image on the screen which is three times the object. Det	
focal length of the lens if the distance between the object and the screen is 80 cm.	(3mks)
5. State the conditions under which total internal reflection occur.	(2mks)

6. The following figure shows the path of a ray of light through a transparent material placed in air

Determine the refractive index of the transparent material

(2mks)

7. Give one important use of each of the following waves.

a). X-rays	a ^{KC} 5	
b). Infra red	W. Hos	
c). Microwaves	ing	3mks
		<u>.</u>

8. **Figure 3** below shows a wave front before and after passing through an opening as shown.

State what would be observed on the pattern after passing the opening if;

9. The potential between the anode and the cathode of an x-ray tube is 80kV. Ca an electron accelerated in the tube.	lculate the energy of (2mks)
 Draw the magnetic field pattern between two wires carrying current as sho below. 	own in the figure 4 (1mk)
Sigure 4	9
11. The Figure 5 shown below shows two ways; P and Q of biasing a P-N jun	nction
In which circuit will current flow? Explain this.	(2mks)
1186 Ogen	
12. Give a reason why alpha particles in a cloud chamber cause short, straight	and thick tracks. (1mk)

SECTION B (55 MARKS)

13. The figure below shows the displacement-time graph of a wave traveling at 400cm/s.

I

Determine for the wave, the:

(i) Amplitude

(1mk)

(ii) Period

(1mk)

(iii) Frequency

(2mks)

(iv) Wavelength

(3mks)

- a) With an aid of a labelled diagram describe an experiment to determine the focal length 14. of a concave mirror. (4mks)
 - b) The table below shows the object distance, u, a nd the corresponding image distance, V, for an object placed infront of a concave mirror.

u(cm)	15	20	26	30	50	60
v(cm)	30	20	18.75	15	12.5	12
1/u (cm ⁻¹)						
$1/_{\rm v} ({\rm cm}^{-1})$						

(3mks)

- ii) Plot a graph of ¹/u against ¹/_v.(Use grid provided) (5mks)
- iii) From the graph, determine the focal length of the mirror. (2mks)

15.	a) State two factors that determine the capacitance of a parallel plate capacitor.	
	×	

b) Three capacitors of capacitance $100\mu f$, 500aF and $400\mu f$ are connected together in a circuit.

•	Draw a circuit diagram to show the arrangement of the capacito	rs which gives an effective
	capacitance of $250\mu f$	(3mks)
	es Solv	
	W.	
	144	
	jišit	

c) The **figure 10** below shows a circuit where a battery of e.m.f 6V a voltmeter, switches X and Y, two capacitors of capacitance $2 \mu F$ and $4 \mu F$ are connected.

open.	(3mks
When switch Y is finally closed and switch X is open, determine t	he potential differen
across each capacitor.	(3mks
	, colf.
The figure 11 below shows a connection to the pin plug.	<i>3</i>
The figure 11 below shows a connection to the pin plug. Blue wire Fuse Figure 11 Figure 11	
Name the parts A, B and C	(3mks
A-	`
В -	
C -	
Why is the earth pin normally longer than the two pins?	(1mk)

c)	What is	the	purpose	of the	follo	wing	
C,	vv nat is	uie	purpose	or me	10110	wing.	:

(2mks)

i). Fuse	
ii). Earthing	

d) A consumer has the following appliances operating in the laboratory for the times indicated in one day

Appliance		time
1.	2 Fluorescent tubes (40W)	12 hrs
2.	one 500 W fridge	24 hrs
3.	one 3kW electric heater	3 hrs

i) Calculate the total power of the appliances used

(2mks)

(3mks)

17. a) State Ohm's law.

(1mk)

b) The figure below shows a circuit.

Calculate:

i) The total resistance of the circuit.

(3mks)

ii) The total current flowing in the circuit

(2mks)

(iii) The current through the 3Ω resistor

(3mks)

