Name \qquad Class \qquad

FORM 2

END-YEAR EXAMINATION 2017
2 $1 / 2$ Hours

Instructions to candidates
$>$ Write your name and class in the spaces provided above.
$>$ The paper contains two sections, section A and B.
\Rightarrow Answer ALL the questions in Section \boldsymbol{A} and any five questions from Section B
$>$ All answers and working must be written on the question paper in the spaces provided below each question.
$>$ Show all the steps in your calculations, giving your answers at each stage in the spaces below each question.
$>$ Marks may be given for correct working even if the answer is wrong.
$>$ Mathematical tables may be used.
> Electronic calculators MUST NOT be used.
For Examiner's use only.

Section A

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	Total

Section B

17	18	19	20	21	22	Total

Grand
Total

This paper consists of 13 printed pages
Candidates should check the question paper to ascertain that all the pages are printed as indicated and no questions are missing SECTION A: (50 MARKS)
Answer ALL questions in this section

1. Factorise completely $5 a^{2}+a b-4 b^{2}$
2. Without using a calculator evaluate

$$
\frac{14 \div \frac{1}{3} \text { of } 5 \frac{1}{4}-3 \frac{3}{4} \times 1 \frac{1}{3}}{\frac{3}{5} \times 6 \frac{1}{4}+1 \frac{1}{2}}
$$

3. Use logarithms to evaluate:
$\sqrt{\frac{(0.8524)^{3} \times 24.86}{99.28-15.53}}$
4. Find the value of x in the equation
5. Given that $\tan x=\frac{5}{12}$ find without using mathematical tables or calculator the value of
(i) $\quad \operatorname{Sin} \mathrm{x}$
(2 marks)
(ii) $\operatorname{Cos}(90-x)$
6. The length and width of a rectangle are 24 cm and 15 cm respectively. Each dimension of the rectangle is increased in theratio 4:3
a) Find the dimensions of the rectangle.
b) Calculate the percentage increase in the perimeter of the rectangle
7. A cylindrical Can has a diameter of 6 cm while a larger similar Can has a diameter of 15 cm
(a) determine
i) The liner scale factor
(1 mark)
ii) The volume scale factor
(1 mark)
b) Calculate the capacity of the smaller can given that the capacity of the Targer can is 5.625 L
8. Twenty four men take 14 days to dig 8 hectares offand. How many more men will be required to dig 10 hectares in 12 days?
9. The interior angle of a regular polygon is 3 times the exterior angle. Find the exterior angle and hence the number of sides of the polygon.
10. The width of a rectangle is ($3 \mathrm{x}-1$) cm . Its length is 4 cm longer than the width. Given that the area of the rectangle is $96 \mathrm{~cm}^{2}$. Find its length.
11. Three similar 21 inch television sets and five similar 17 inch television cost Ksh.129,250. The difference between the cost of two 21 inch television sets and four 17 inch television sets is Ksh.22,000. Calculate the price of a 21- inch television set and that of 17-inch television set. (3 marks)
12. On a certain day a bank exchanged curceencies at the rate given in the table below.

Currency	Euro	US dollar	UK£
Buying (Ksh)	102.90	77.65	116.40
Selling (Ksh)	103.85	78.20	117.75

Emmanuel exchanged 400 Euros and 580 us dollars into Kenyan shillings and used the money to buy 600 UK£. Calchate the amount of money in Kenyan shillings remained
13. Find the integral values of x which satisfies the inequalities $2 \mathrm{x}-1<7+\mathrm{x} \leq 3 \mathrm{x}+1$ (3 marks)
14. Without using mathematical tables evaluate the following giving your answer in surd form.
(3 marks)
$\frac{\sin 45^{\circ}+\cos 30^{\circ}}{\tan 60^{\circ}}$
15. Use reciprocal tables to evaluate
16. The table belowgives masses of 44 students measured to the nearest kilograms.

Masses (kg)	Frequency
$35-39$	4
$40-44$	11
$45-49$	16
$50-54$	10
$55-59$	3

(a) State the modal class
(b) Calculate the median mass to 2 decimal places

SECTION B(50 MARKS)

Answer any five questions in this section
17. Town B is 300 km on a bearing of 060° from town A. The same town B is also on a bearing of 330° from town C, 250 km away.
a) Using a scale of 1 cm to 50 km make an accurate scale drawing to represent the positions of the three towns.

(b) Find the distance of down C from town A.
(c) What is the bearing of C from town B.
18. A right conical frustum of base radius 6 cm is mounted on top of a cylinder of the same base radius and height 10 cm . The top of the solid frustum is of radius 3.6 cm . The height of frustum is also 6 cm . Take $\pi=\frac{22}{7}$.

Calculate:
(a) The total surface area of the solid.
(b) The volume of the solid.
19. A school bus left Nairobi at 9:00am and traveled towards Eldoret at an average speed of $80 \mathrm{~km} / \mathrm{hr}$. At 9.30a.m a car left Eldoret towards Nairobi at an average speed of $120 \mathrm{~km} / \mathrm{h}$. Given that the distance between Nairobi and Eldoret is 400 km . Calculate
(a) The time the car arrived in Nairobi
(b) The time the two vehicles met
(c) The distance from Nairobi to the meeting point
(d) The distance of the bus from Eldoret when the car arrived in Nairobi
(2 marks)
20. The figure below shows two circles of radii 10.5 and 8.4 cm and with centres A and B respectively. The common chord $\mathrm{PQ}=9 \mathrm{~cm}$.

(a) Calculate angle PAQ.
(b) Calculate angle PBQ.
(2 marks)
(c) Calculate the area of the shaded part.
21. The vertices of triangle $P Q R$ are $P(0,0), Q(6,0)$ and $R(2,4)$
(a) Draw triangle PQR on the grid provided.
(1 mark)
(b) Triangle $\mathrm{P}^{1} \mathrm{Q}^{1} \mathrm{R}^{1}$ is the image of a triangle PQR under an enlargement scale factor $1 / 2$ and centre $(2,2)$. Write down the coordinates of triangle $\mathrm{P}^{1} \mathrm{Q}^{1} \mathrm{R}^{1}$ and plot on the same grid.
(2 marks)
(c) Draw triangle $\mathrm{P}^{11} \mathrm{Q}^{11} \mathrm{R}^{11}$ the image of triangle $\mathrm{P}^{1} \mathrm{Q}^{1} \mathrm{R}^{1}$ under a positive quarter turn about points (1, 1).
(3 marks)
(d) Draw a triangle $\mathrm{P}^{111} \mathrm{Q}^{111} \mathrm{R}^{111}$ the image of triangle $\mathrm{P}^{11} \mathrm{Q}^{11} \mathrm{R}^{11}$ under reflection in the line $\mathrm{y}=1$. (2 marks)
(e) Describe fully a single transformation triangle $\mathrm{P}^{111} \mathrm{Q}^{111} \mathrm{R}^{111}$ onto triangle $\mathrm{P}^{1} \mathrm{Q}^{1} \mathrm{R}^{1}$.
(2 marks)
22. Find the equation of a straight line passing through the points $(3,2)$ and $(-3,6)$ giving your answer in the form , $\frac{x}{a}+\frac{y}{b}=1 \quad$ where a and b are constants.
b) State the coordinates of point A and B, at which the line $i n(a)$ above crosses the x-axis and y axis respectively.
(2 marks)
c) Using the information in (a) and (b) above, find the area of triangle AOB , where O is the origin.
d) Find the acute angle the line in (a) above makes with the x-axis.
23. The figure below represents a rectangle PQRS inscribed in a circle centre O and radius 17 cm . $P Q=16 \mathrm{~cm}$.

Calculate
(a) The length PS of the rectangle
(b) The angle POS
(c) The area of the shaded region

24(a) Without using a protractor or set square, construct a triangle ABC in which $\mathrm{AB}=4 \mathrm{~cm}$. $B C=6 \mathrm{~cm}$ and $\angle \mathrm{ABC}=6712^{\circ}{ }^{\circ}$. Take AB as the base. (Use a graph in this question) (3 marks) Measure AC
b) Draw a triangle $A^{1} B^{1} C^{1}$ which is indirectly congruent to triangle $A B C$. (3 marks)
c) Taking the mid point of $A B$ as your centre of rotation (M). Find the triangle $A^{11} B^{11} C^{11}$ the image of $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1}$ after -90^{0}.
(4 marks)

