Name	Index Number
233/2	Candidate's Signature
CHEMISTRY	
Paper 2	Date
Nov. 2016	

2 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL **Kenya Certificate of Secondary Education**

CHEMISTRY

Paper 2 (THEORY)

2 hours

Instructions to candidates

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) Answer **all** the questions in the spaces provided.
- (d) KNEC mathematical tables and silent non-programmable electronic calculators may be used.
- (e) All working must be clearly shown where necessary.
- (f) This paper consists of 12 printed pages.
- (g) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- (h) Candidates should answer the questions in English.

For Examiner's Use Only

Question	Maximum Score	Candidate's Score
1	11	
2	12	
3	13	
4	11	
5	10	
6	12	
7	11	
Total Score	80	

1. Use the information in the table below to answer the questions that follow. The letters do not represent the actual symbols of the elements.

Element	Atomic number	Melting point °C
R	11	97.8
S	12	650.0
Т	15	44.0
U	17	-102
V	18	-189
W	19	64.0

(a)	Give	e a reason why the melting point of:	
	(i)	S is higher than that of R.	(2 marks)
		- Make	
		nnd.	••••••
	(ii)	V is lower than that of U. is lower than that of U.	(2 marks)
		Set Park	
		······································	
(b)	How	does the reactivity of W with chlorine compare with that of R with chlorine	orine? (2 marks)
	•••••		
(c)	Writ	e an equation for the reaction between T and excess oxygen.	(1 mark)
	•••••		
	•••••		

	(d)	When $1.15 \mathrm{g}$ of R was reacted with water $600 \mathrm{cm}^3$ of gas was produced. Determine the relative atomic mass of R. (Molar gas volume = $24000 \mathrm{cm}^3$) (3 marks)
	(e)	Give one use of element V. (1 mark)
		com
2.	(a)	Describe the process by which nitrogen is obtained from air on a large scale. (4 marks)
		'Also yes
		isit in which
		ale III
	(b)	Study the flow chart below and answer the questions that follow. Nitrogen gas
		Ammonia Copper (II) oxide Step (VI) Heat Step (I) Air Platinum-Rhodium High temperature Gas J Water
		Step (II) V Air Nitrogen (IV) oxide Step (III) Step (III) Step (IV) Step (V) Heat Products

	Identify g	gas J.		(1 mark
(ii)	Using ox	idation numbers show that ar	mmonia is the reducing a	agent in step (VI) (2 marks
(iii)	Write the	equation for the reaction tha	t occurs in step (V).	(1 mark
(iv)	Give two	uses of ammonia nitrate.	odsity apo	(2 marks
				•••••
		nn,	iles fo	
cation		shows the observation made ats E, F and G until in excess Addition of a few drops of aqueous ammonia	Addition of excess	a was added to
cation	n of elemer	Addition of a few drops of aqueous ammonia	Addition of excess aqueous ammonia	a was added to
Catio	n of elemer	Addition of a few drops of aqueous ammonia White precipitate	Addition of excess	a was added to
Catio	n of elemer	Addition of a few drops of aqueous ammonia White precipitate	Addition of excess aqueous ammonia Insoluble	a was added to
Cation E F	on of	Addition of a few drops of aqueous ammonia White precipitate No precipitate	Addition of excess aqueous ammonia Insoluble No precipitate Dissolves	
Cation E F G	on of Select the	Addition of a few drops of aqueous ammonia White precipitate No precipitate White precipitate	Addition of excess aqueous ammonia Insoluble No precipitate Dissolves	(1 mar)
Cation E F G	on of Select the	Addition of a few drops of aqueous ammonia White precipitate No precipitate White precipitate white precipitate white precipitate	Addition of excess aqueous ammonia Insoluble No precipitate Dissolves	(1 mar)

3.	(a)	Methanol is manufactured from carbon (IV) oxide and hydrogen gas according to the
		equation.

$$CO_{2(g)} + 3H_{2(g)} \rightleftharpoons CH_3OH_{(g)} + H_2O_{(g)}$$

The reaction is carried out in the presence of a chromium catalyst at 700K and 300k pa. Under these conditions, equilibrium is reached when 2% of the carbon (IV) oxide is converted to methanol.

(i)		does the rate of the forward reaction compare with that of the reve	
	reacti	on when 2% of the carbon (IV) oxide is converted to methanol?	(1 mark)
	•••••		•••••
		S	
		300	
	••••••	Silva	
(ii)	Expla	ain how each of the following would affect the yield of methanol:	
	I	reduction in pressure	(2 marks)
		un	
		all.	••••••
		OF S	
	II	using more efficient catalyst	(2 marks)
			,
		Koz	
(iii)		e reaction is carried out at 500k and 300k pa, the percentage of care converted to methanol is higher than 2%.	bon (IV)
	I	What is the sign of ΔH for the reaction? Give a reason	(2 marks)
			••••••

		II Explain why in practice the reaction is carried out at 700K but not a (2)	t 500K marks)
			•••••
			•••••
			•••••
(b)	Hydro	ogen peroxide decomposes according to the following equation:	
	2H ₂ O ₂	$_{2}$ (aq) \rightarrow 2H ₂ O(I) + O ₂ (g)	
	In an 6.0 ×	experiment the rate of decomposition of hydrogen peroxide was found to be $10^{-8} \text{moldm}^{-3} \text{S}^{-1}$;
	(i)	Calculate the number of moles per dm ³ of hydrogen peroxide that has decomposed within the first 2 minutes. (2	marks)
		, freeke	•••••
		May.	
		jist. "	

	(ii)	In another experiment, the rate of decomposition was found to be 1.8×10^{-7} moldin 3 S ⁻¹ . The difference in the two rates could have been carby addition of a catalyst. State giving reason, one other factor that may have	
			marks)
			•••••
			•••••

4. (a) The set up below can be used to produce sodium hydroxide by electrolysing brine.

(i)	Identify gas Y.	CO.	(1 mark)
		sers.	
		*00/	••••••

Describe how aqueous sodium hydroxide is formed in the above set-up. (2 marks)

(iii)	One of the uses of sodium hydroxide is in the manu	ufacture of soaps. State one
	other use of sodium hydroxide.	(1 mark)
	we Y	
	cot l	

(b) Study the information given below and answer the questions that follow

Half reactions	Electrode potential $E^{\theta}V$
$D_{(aq)}^{2+} + 2e \longrightarrow D_{(s)}$	-0.13
$E_{(aq)}^+ + e \longrightarrow E_{(s)}$	+0.80
$F_{(aq)}^{3+} + e \longrightarrow F_{(aq)}^{2+}$	+0.68
$G_{(aq)}^{2+} 2e \longrightarrow G_{(s)}$	-2.87
$H_{(aq)}^{2+} + 2e \longrightarrow H_{(s)}$	+0.34
$J_{(aq)}^+ + e \longrightarrow J_{(s)}$	-2.71

(ii)

(i)	Construct an electrochemical cell that will produce the largest e.m.f.	(3 marks)
		•••••
	OLL.	
(ii)	Calculate the e.m.f. of the cell constructed in (i) above.	(2 marks)
	- Styape	
	i de la companya de l	
	kie et e	
(iii)	Why is it not advisable to store a solution containing E+ ions in a cor	ntainer made
	of H?	(2 marks)
	208Kg	***************************************
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	to _t	

5. The diagram below represents a set up of an electrolytic cell that can be used in the production of aluminium.



Konva Cortificate of Secondary Education, 2016

(a)	On the diagram, label the anode.	(1 mark)	
(b)	Write the equation for the reaction at the anode.	(1 mark)	
(c)	Give a reason why the electrolyte process is not carried out below 950°C.	(1 mark)	
(d)	Give a reason why the production of aluminium is not carried out using reducti process.	on (1 mark)	
	VCS6082		
(e)	Give two reasons why only the aluminium ions are discharged.	(2 marks)	
	ist. W		
	* Dader		
(f)	State two properties of duralumin that makes it suitable for use in aircraft indus	stry. (2 marks)	
	60.		
(g)	Name two environmental effects caused by extraction of aluminium.	(2 marks)	

5.	(a)	Draw the structural formula for all the isomers of C ₂ H ₃ Cl ₃ .	(2 marks)
	(b)	Describe <b>two</b> chemical tests that can be used to distinguish between ethene a	and ethane. (4 marks)
			•••••
		25,000	
		C.S.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.	
	(c)	The following scheme represents various reactions starting with propan-l-ol. answer the questions that follow.	Use it to
		Prop-1-ene Polymerisation Polymer X	
		Dehydration Step Io	
		Oxidation Step III	
		Step IV Propanoic acid Add sodium carbonate	
		(i) Name <b>one</b> substance that can be used in Step I.	(1 mark)
		(ii) Give the general formula of X.	(1 mark)
		(11)	

		(iii) Write the eq		uation for the reaction in Step IV.			(1 mark)		
				••••••		•••••			
	(i	(iv)					urnt completely of gas. $(C = 12)$		
				olar gas volum				(3 marks)	
					••••••				
							, APE	2	
							asile	•••••	
				•••••		-eX	5		
7.	(a)	a) Write an equation to show the effects of heat on the nitrates of:							
		(i)	Potassium		ects of heat on	<b>4</b>		(1 mark)	
					e jeji.				
					3				
		(ii)	Silver	o Past Pal				(1 mark)	
				<u> </u>					
			र्वर	•					
	(b)								
		El	ements	Atomic	Atomic ra	adius	Atomic radius		

Elements	Atomic Number	Atomic radius (nm)	Atomic radius (nm)
A1	3	0.134	0.074
A2	5	0.090	0.012
A3	13	0.143	0.050
A4	17	0.099	0.181

(i)	In which period of the periodic table is element A ₂ ? Give a reason.				
	•••••				
	•••••				
	•••••				
	•••••	<u></u>			
(ii)	Expla	in why the atomic radius of:			
	I	A1 is greater than that of A2	(2 marks)		
		Merce.			
	II	Al is smaller than its ionic radius	(2 marks)		
		, visit!	•••••		
		Ale Commence			
		ast P			
(iii)	Select	t the element which is in the same group as A3.	(1 mark)		
	٩Ċ	<i>y</i>			
	•••••		•••••		
(iv)		Dots (.) and crosses (x) to represent outermost electrons, draw a the bonding in the compound formed when A1 reacts with A4.	a diagram to (2 marks)		

