THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education

233/3 -

CHEMISTRY (PRACTICAL) Nov. 2017 – 21/4 hours

- Paper 3

Name Index Number

Candidate's Signature Date

Instructions to candidates

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) Answer all the questions in the spaces provided in the question paper.
- (d) You are **not** allowed to start working with the apparatus for the first 15 minutes of the 2¼ hours allowed for this paper. This time is to enable you to read the question paper and make sure you have all the chemicals and apparatus that you may need.
- (e) All working **MUST** be clearly shown where necessary.
- (f) KNEC mathematical tables and silent electronic calculators may be used.
- (g) This paper consists of 8 printed pages.
- (h) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
 - Candidates should answer the questions in English.

For Examiner's Use Only

Question	Maximum Score	Candidate's Score
1	19	
2	12	
3	9	
Total Score	40	

- 1. You are provided with:
 - Solution A, 0.5 M copper(II) sulphate
 - Solid B₁, metal B₁ powder
 - Solid B₂, Iron powder
 - Solution C, 0.02 M acidified potassium manganate(VII)

You are required to determine the:

- Enthalpy change for the displacement reaction between metal B₁ and copper(II) sulphate.
- Mass of iron that reacts with copper(II) sulphate in the displacement reaction.

PROCEDURE I

Using a pipette and a pipette filler, place 25.0 cm³ of solution A into a 100 m (a) (i) plastic beaker. Allow to stand for about 1 minute and then measure the temperature of the solution. Record the reading in Table 1 as the initial temperature. Add al of solid B₁ to the solution. Stir the mixture carefully with the thermometer and measure the highest temperature reached. This will take about 5 minutes. Record the reading in **Table 1** as maximum temperature reached.

Table 1

Maximum temperature reached (°C)	20. 0
Initial temperature (°C)	20 . 0
Change in temperature, ΔT_1 (°C)	10.0
2 not kee Co	(3 marks
to who were the	31.0

II enthalpy change for the reaction of me sulphate. (Assume that for the mixture, specific legal = 1.0 g cm ⁻³) Repeat procedure I, (a) (i) with all of metal B ₂ (in The maximum temperature is reached after about readings in Table 2. Retain the mixture for use in Table 2 Maximum temperature reached (°C) Initial temperature (°C)	ron powder) in place of mean managements. Record the term	and (
sulphate. (Assume that for the mixture, specific I = 1.0 g cm ⁻³) Repeat procedure I , (a) (i) with all of metal B ₂ (i) The maximum temperature is reached after about readings in Table 2 Maximum temperature reached (°C)	ron powder) in place of mean managements. Record the term	and (
Repeat procedure I, (a) (i) with all of metal B ₂ (i) The maximum temperature is reached after about readings in Table 2. Retain the mixture for use i Table 2 Maximum temperature reached (°C)	ron powder) in place of m 8 minutes. Record the tem	(
The maximum temperature is reached after about readings in Table 2. Retain the mixture for use i Table 2 Maximum temperature reached (°C)	8 minutes. Record the ten	
The maximum temperature is reached after about readings in Table 2. Retain the mixture for use in Table 2 Maximum temperature reached (°C)	8 minutes. Record the ten	
The maximum temperature is reached after about readings in Table 2. Retain the mixture for use i Table 2 Maximum temperature reached (°C)	8 minutes. Record the ten	
The maximum temperature is reached after about readings in Table 2. Retain the mixture for use i Table 2 Maximum temperature reached (°C)	8 minutes. Record the ten	
The maximum temperature is reached after about readings in Table 2. Retain the mixture for use i Table 2 Maximum temperature reached (°C)	8 minutes. Record the ten	
K(C)	×7.0	
	20.0	
Change in temperature, ΔT ₂ (°C)	7.0	
		(3
Compare the changes in temperature ΔT_1 and ΔT_2	and comment on the diffe	erence (2
		(2
		•••••
		•••••

ζ

PROCEDURE II

- (i) Fill a burette with solution C.
- Filter the mixture obtained in **procedure I (b)** into a 250 ml volumetric flask. Wash the (ii) residue with distilled water and add into the flask. Add more distilled water to make up to the mark. Label this as solution B₂.
- Using a pipette and a pipette filler, place 25.0 cm³ of solution $\mathbf{B_2}$ into a 250 ml conical (iii) flask. Titrate solution B_2 with solution C until a permanent pink colour just appears. Record the readings in Table 3.

Repeat step (iii) and complete Table 3.

(d) Table 3

	I COLO	П	III
Final burette reading	2007	5.8	6.7
Initial burette reading	Ø.0	0.0	0:0
Volume of solution C used, cm ³	6.7	4.8	6.7
· Kre			(4 marks)

	an'	(4 marks
(e)	Calculate the average volume of solution C used.	(1 mark
	Salaria.	•••••
	CHOE DOST P	

(f)	The equation for the reaction between manganate(VII) and iron(II) ions is:				
	MnC	$MnO_4^-(aq) + 5Fe^{2+}(aq) + 8H^+(aq) \longrightarrow Mn^{2+}(aq) + 5Fe^{3+}(aq) + 4H_2O(aq)$ Calculate the number of moles of:			
	Calc				
	(i)	potassium manganate(VII) used.	(1 mark)		
			•••••		
	(ii)	iron (II) ions in 25.0 cm ³ solution B	(1 mark)		
		- OLC SOL			
	(iii)	iron that reacted with copper(II) sulphate.	(1 mark)		
		2000			
(-)	D-4-	ermine the mass of iron that reacted. (RAM of Fe = 55.8)	(1 mark)		
(g)	Dete		(1 mark)		
	fol				
	•••••				
	•••••		•••••		

- 2. You are provided with:
 - Solid K
 - Aqueous ammonia
 - Aqueous sodium sulphate
 - Dilute nitric(V) acid
 - Wooden splint

Solid K is suspected to be lead(II) carbonate.

(a) From the reagents provided, select and describe **three** tests that could be carried out **consecutively** to confirm if **solid K** is lead(II) carbonate. Write the tests and expected observations in the places provided.

)	
Test 1	Expected Observations
	200
	asiQ*
	Sego
y see	
(1 mark)	(1 mark)
(1 mark) i) That 2 wish when the electrons are the control of the	
Test 2	Expected Observations
2/2/07	
est. V	
.8	
(1 mark)	(1 mark)
ii) (1 mark)	
Test 3	Expected Observations
(1 mark)	(1 mark)

- (b) Carry out the tests described in (a) using **solid K** and record the observations and inferences in the spaces provided.
 - (i) Test 1

Observations	Inferences
(½ mark)	(½ mark)

(ii) Test 2

(iii) Test 3

Observations	Inferences
Sels	
* 634	
085	
k100	
(1 mark)	(1 mark)

3.	You are provided with an organic compound solid M. Carry out the following tests. Record to observations and inferences in the spaces provided.
	observations and inferences in the spaces provided.

(a)	Place all of solid M in a boiling tube. Add about 10 cm ³ of distilled water and shall Retain the solution for use in procedure (b) (i), (ii) and (iii).
(a)	Retain the solution for use in procedure (b) (1), (11) and (111).

	T. C
Observations	Inferences
(1 mark)	(1 mark)

Use about 2 cm³ portions of the mixture in a test tube for tests (i), (ii) and (iii). (b)

To the first portion, add all the solid sodium carbonate provided. (i)

		1 200	Inferences
Observations		ex Room	Interences
		000	
		3	
	- Sko	<u> </u>	
	HO		
(1 mark)	-14.		(1 mark)

To the second portion, add two drops of acidified potassium manganate(VII) and (ii) warm the mixture

Observations	Inferences
Object value	
0,0	
K.C.	
	
0,	
(1	(2 marks)
(1 mark)	•

To the third portion, add about 2 cm³ of acidified potassium dichromate(VI). (iii) Heat the mixture to boiling and allow to stand for about 2 minutes.

	Inferences
Observations	Interences
	(1)
(1 mark)	(1 mark)

THIS IS THE LAST PRINTED PAGE.