NAME		DATE	
INDEX NO.	CANDIDATE	S SIGNA	TURE

232/3

PRE-MOCK

Kenya Certificate of Secondary Kenya Certificate of Secondary Education (K.C.S.E)

PHYSICS PAPER 3 PRACTICAL TIME: 2 1/2 HOURS

IDISTRICTION SHOP CANDIDATES

- o Write your manie and index number in the spaces provided
- o Answer ALL the questions in the spaces provided in the question paper.
- o You are supposed to spend the first 15 minutes of the 2 1/2 hours allowed for this paper reading the whole paper carefully before commencing your work.
- o Marks are given for clear record of observations actually made, their suitability, accuracy withe use made of them.
- o Candidates are advised to record their observations as soon as they are made.
- o Non- programmable silent electronic calculators and KNEC mathematical table may be used

FOR EXAMINERS-USE ONLY

Question 1	b (ii)	c (i)	c (ii)	c (iii)	c (iv)	d(i)	d (ii)
Maximum score	3	5	2	1	1	2	2
Candidate's score	1 12						

Question 2	a	ь	c (i)	c (ii)	c (iii)	f (i)	f (ii)	24 171 30
Maximum score	1	8	5	2	2	2	2	
Candidate's					and the Roman			Grand
score			÷					total

This paper consists of 6 printed pages. Candidates should check to ensure that all pages are printed as indicated and no questions are missing

- · Mass S
- · One 100g mass
- Metre rule
- · Cotton thread (3 -pieces each about 30cm long)
- · Retort stand and clamp
- 250cm³ glass beaker
- 200cm³ of water
- (a) (i) Make loops of thread on mass S and the 100 g mass
 - (ii) Suspend the metre rule on the clamp from the 50cm mark
 - (iii) Hang mass S from the mark. Balance the metre rule using the 100g mass (see fig. 1 below)

- (iv) Measure the distance X_1 and X_2 from the 50cm mark
- (v) Repeat the procedures for the values of X_1 indicated in the table below:

X ₁ (cm)	X ₂ (cm)	X ₃ (cm)	X ₂ -X ₃ (cm)		
45					
40		25-0	y-		
35					
30					
25					
20		в 9			

(b) (i) Repeat steps (a) (iii) to (a) (iv) above, but this time, keep mass S totally immersed in water. Record distance X₃ required to balance the 100g mass in the table above.

(ii) Complete the table for the values of (X2- X3)

(5mks)

(c) (i) Plot a graph of X_2 (Vertical axis) against (X_2-X_3) on the grid provided

(5mks)

ii)	Determine the slope of your graph	(2mks)
iii)	What physical property does the slope, represent?	(lmk)
iv)	Given that the density of water is 1000kg/m³, determine the density of mass, S	 (1mk)
(d) (i	i) Using the apparatus you were given, determine the mass of your metre rule	(2mks)
•••••		
•••••		
(ii) I	Draw a diagram of the set-up of the apparatus you have used to work out (d) (i) above	(2mks)
	W.	
	w	

You are provided with the following: -

- Ammeter
- A voltmeter
- A straight wire XY mounted on a millimeter scale
- Two jockeys
- 7 connecting wires
- · A micrometer screw gauge (to be shared)
- · A cell holder for two dry cells
- Two dry cells
- A switch
- •

Proceed as follows:

(a) Using the micrometer screw gauge, determine the diameter'd' of the wire XY

d = _____mm

Set-up the apparatus as shown below:-

(1mk)

b) With both jockeys set at L = 10cm from X, measure current I through the wire and voltage V across it.

Repeat this procedure for the other values of L and record in the table below: (8mks)

Length (cm)	10	30	40	50	70	80	100
Length (m)						· · · · · · · · · · · · · · · · · · ·	-
		1				L.	1 .
Current I(A)							
Voltage V(V)	1				-	 	
$R = V/I(\Omega)$	+	_			-	 	

c) (i) Using the values in the table above, plot a graph of I(A) against $R(\Omega)$ on the grid provided (5mks)

(ii) Determine the gradient of the graph at $\mathbf{R} = 10\Omega$	* .	e	(2mks)

(iii) Given that
$$-\mathbf{I} = \frac{\pi \mathbf{d}^2 \mathbf{R}}{4\mathbf{K}\mathbf{L}}$$
 where $\mathbf{L} = 60$ cm, find the value of \mathbf{K}

 ********************	 ***************************************
•	

Part B

You are provided with the following apparatus

- A lens
- A lens holder
- A candle
- A white screen
- A metre rule

Procedure

d) Set up the apparatus a shown in the figure 3 below:

- e) Starting with u = 30cm adjust the position of the screen to obtain a sharp image of the candle, record value of V in the table shown below:
 (i) Repeat the procedure above for u = 20cm and complete table below:

Table 3

Rem	v cm	$\mathbf{M} = \frac{v}{u}$
20		
30		

(2mk)

(ii)	Given that the focal length of the lens satisfies the equation, $f = \frac{v}{1+m}$ determine the								
	average value						(2mks		
	y., .				.~.	Δ,			