FORM 3 TERM 3 232/3 PHYSICS PRACTICAL PAPER 3 TIME: 2 ¼ HOURS

NIVIE.	ADM NO:
INAIVIL	

INSTRUCTIONS TO CANDIDATES

- Write your name and index number in the spaces provided above.
 Answer all questions in the spaces are:
- You are supposed to spend the first 15minutes of the 2 1/2 hours allowed for the paper reading the whole paper carefully.
- Marks are awarded for clear record of the observations actually made, their suitability and accuracy.
- Candidates are advised to record their observations as soon as are made.
- Mathematical tables and calculators may be used.

	QUESTION 10	QUESTION 2	TOTAL
SCORES	286		
OUT OF	20	20	40

QUESTION 1

You are provided with the following apparatus

- A metre rule
- A cotton or a silk thread
- A stop watch or stop clock
- A 50g mass
- Four pieces of wood

Proceed as follows:

a)Measure accurately 1 metre of thread and cut it leaving an allowance of 50cm on either end. Mark the centre of the thread

b)Clamp the thread between two retort stands and suspend a 50g mass at the same level 55cm above the bench, as shown below.

c)By moving one end of the retort stands, adjust **d** to value of 40cm.

d)pull the mass slightly in a direction parallel to **xy** then release it to oscillate. Record the time **t**,for 20 oscillations.

e)Repeat the procedure (c) and (d) with other values of **d**, increasing at intervals of 5cm and complete the table below. Where **T** is the periodic time.

d(cm)	40	45	50	55	60	65	70	75	85
t(s)									
T(s)									
$T^{2}(s^{2})$									
d ² (cm ²)							4		

(7mrks)

f)plot a graph of T^2 against d^2 (5mrks)

g)Determine the slope of your graph.(3mrks)

$$T^2 = \frac{3d^2}{m} + C$$

using your graph determine the values.

Μ l.

(3mrks)

II. С

(2mrks)

QUESTION TWO

PART A

You are provided with the following:

- Vernier calipers
- Micrometer screw gauge
- Masses;two 10g,20g,50g and 100g
- A helical spring
- Metre rule or half metre rule

Proceed as follows

a) Determine the number of complete turns of the helical spring.
N=(1mrk)
b) Measure the external diameter of the spring using the vernier calipers
D=m (1mrk)
c) Use the micrometer screw gauge to determine the diameter of the wire of the spring.
D=m
d) Determine the value of M $N = 0.40$
(2mrk)
korfree past per
* (ee)

e)Suspend the helical spring vertically alongside the clamped half metre rule as shown in figure 1below.Determine the length L₀, of the spring before loading it.

L_o=.....cm

f)load the spring with a mass of 20g and determine the new reading on the metre.(L) record this in the table below. Calculate the extension $e=L-L_0$ due to the mass of 20g and record the value in the table given below. Repeat step f for other masses and complete the table.

Mass(g)	0	10	200	30	40	50	60	70	80	90	100
Weight(N)			9								
Reading(L)cm		3									
Extension e(cm)		, e									
Ye (cm ⁻¹)	4/1										
	<i>ξ</i> Ο.		•	•		•			•	•	•

g)Plot a graph of weight (N) against 1/e (cm⁻¹) (5mrks)

h)Determine the slope (s) of the graph at a mass of 45g (3mrks)

i)Given that
$$M = \frac{-255T}{(S+60)^2}$$

Determine the value of T where S is the slope at 45g (3mrks)

For free past papers visit: www.freekcsepastpapers.com