THE KENYA NATIONAL EXAMINATIONS COUNCIL Kenya Certificate of Secondary Education

233/2

— CHEMISTRY —

Paper 2

(THEORY) Nov. 2019 – 2 hours

Name	Index Number
Candidate's Signature	Date

49 KCSE 2019 KA

Instructions to candidates

- (a) Write your name and index number in the spaces provided above.
- (b) Sign and write the date of examination in the spaces provided above.
- (c) Answer all the questions in the spaces provided.
- (d) KNEC mathematical tables and silent non-programmable electronic calculators may be used.
- (e) All working must be clearly shown where necessary.
- (f) This paper consists of 15 printed pages.
- (g) Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.
- (h) Candidates should answer the questions in English.

For Examiner's Use Only

Question	Maximum Score	Candidate's Score
1	12	
2	10	
3	12	1
4	12	-60%
5	12	
6	11	
7	11	
Total Score	80	

1. (a) Alkanes are said to be saturated hydrocarbons.

	(i)	What is meant by saturated hydrocarbons.	(1 mark)
			••••••
	(ii)	Draw the structure of the third member of the alkane homologous series name it.	and (2 marks)
(b)	When	the alkane, hexane, is heated to high temperature, one of the products is e	thene.
	(i)	Write the equation for the reaction.	(1 mark)
	(ii)	Name the process described in (b).	(1 mark)

(c) Study the flow chart in **Figure 1** and answer the questions that follow.

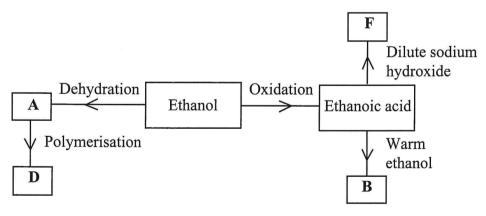


Figure 1

	(i)	Identify A.	(1 mark)
	(ii)	State one physical property of B .	(1 mark)
	(iii)	Draw the structure of D .	(1 mark)
	(iv)	Give a reason why D pollutes the environment.	(1 mark)
	(v)	Write an equation for the formation of F .	(1 mark)
(d)	Descri	be an experiment which can be used to distinguish butene from butanol.	(2 marks)

2. (a) Zinc occurs mainly as zinc blende. Name one other ore from which zinc can be extracted. (1 mark)

The flow chart in Figure 2 shows the various stages in the extraction of zinc metal. (b) Study it and answer the questions that follow.

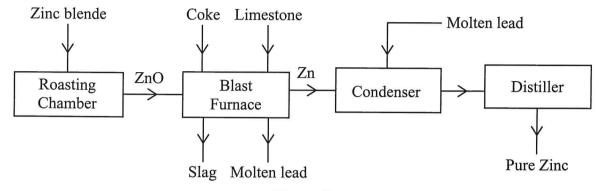


Figure 2

(i)	Write an equation for the reaction which occurs in the roasting chamber	: (1 mark)
(ii)	Describe the process that takes place in the blast furnace.	(3 marks)
		•••••
(iii)	Explain why molten lead is added to the condenser.	(1 mark)
		•••••

0.047

189

(i)

	(iv)	State two uses of zinc. (1 mark)
	(v)	Give one reason why the extraction of zinc causes pollution to the environment. (1 mark)
(c)	Explai	in the observations made when zinc metal is added to hot sodium hydroxide. (2 marks)

3. Figure 3 is a flow chart that shows the process that occurs in the manufacture of nitric(V) acid.

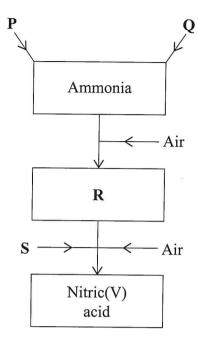


Figure 3

Name	e substance P, Q, R and S.	
P		
Q		(1 mark)
		(1 mark)
R		(1 mark)
S		
		(1 mark)
To obtain The pr	tain substance R , ammonia is heated at 900 °C in the presence of air and roduct is then cooled in air.	a catalyst.
(i)	Name the catalyst for the reaction.	(1 mark)
(ii)	Write the equations for the two reactions described in (b).	(2 marks)
	P Q R S To ob The p (i)	R S To obtain substance R, ammonia is heated at 900 °C in the presence of air and The product is then cooled in air. (i) Name the catalyst for the reaction. (ii) Write the equations for the two reactions described in (b).

	(iii)	Other than nitric(V) acid, name another product that is formed.	(1 mark)
c)	When	ammonia is reacted with nitric(V) acid, it produces a nitrogenous fertilis	ser.
	(i)	Explain why fertilisers play a major role in food production.	(2 marks)
	(ii)	State two problems associated with the use of nitrogenous fertilisers.	(2 marks)

(a)	Expi	and the following observations:
	(i)	The colour of aqueous copper(II) sulphate fades when a piece of magnesium metal is dropped into the solution. (2 marks)
	(ii)	A piece of iron bar is coated with a brown substance when left in the open on a rainy day. (2 marks)
(b)	A san exper	nple of water is suspected to contain aluminium ions (AI³+). Describe a laboratory iment that can be carried out to show that AI³+ ions are present in the water sample. (3 marks)

	•••••	

4.

In an experiment to determine the number of moles of water of crystallisation of a hydrated compound, $Na_2SO_4 \bullet X H_2O$, 5 g of the compound were heated strongly to a

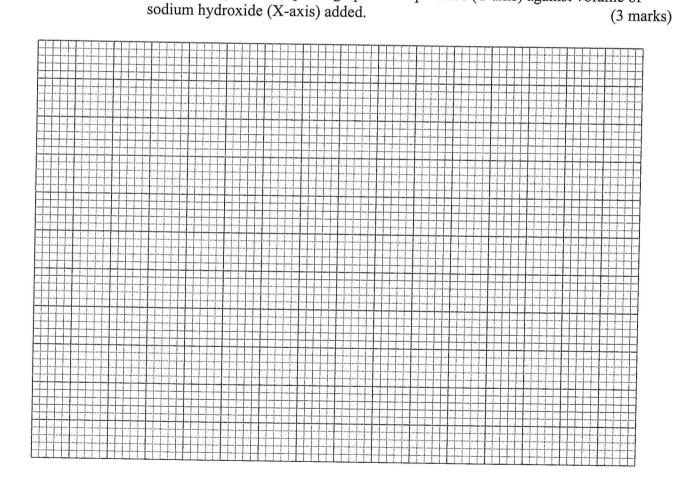
consta	ant mass.	
(i)	Explain how a constant mass was obtained.	(2 marks)
(ii)	During the experiment, the mass of the residue was found to be 2.205 g. Determine the number of moles of water of crystallisation in the component $(Na = 23.0; O = 16.0; S = 32.0; H = 1.0)$	und. (3 marks)

(c)

5.	(a)	What is meant by molar heat of neutralisation?	(1 mark)

(b) In an experiment to determine the molar heat of neutralisation, 50 cm³ of 1M hydrochloric acid was neutralised by adding 10 cm³ portions of dilute sodium hydroxide. During the experiment, the data in **Table 1** was obtained.

Table 1


(i)

Volume of Sodium hydroxide (cm³)	0	10	20	30	40	50	60
Temperature of mixture (°C)	25.0	27.0	29.0	31.0	31.0	30.0	29.0

(ii) On the grid provided, plot a graph of temperature (Y-axis) against volume of

(1 mark)

Write the equation for the reaction in this experiment.

(111)	Determine from the graph the:		
	I.	volume of sodium hydroxide which completely neutralises 50 cm hydrochloric acid.	(1 mark)
	II.	change in temperature, ΔT , when complete neutralisation occurre	d. (1 mark)
(iv)	Calcu	late:	
	I.	the heat change, ΔH when complete neutralisation occurred. (Specific heat capacity = 4.2 Jg ⁻¹ K ⁻¹ , density of solution 1.0 gcm ⁻¹	⁻³) (2 marks)
	II.	molar heat of neutralisation of hydrochloric acid with sodium hydrochloric	lroxide. (1 mark)
(v)		would the value of molar heat differ if 50 cm ³ of 1M ethanoic acid d of 1M hydrochloric acid? Give a reason.	

6.	(a)	Wha	at is meant by standard electrode potential of an element?	(1 mark)	
			·		
	(b)	Use the standard electrode potentials given below to answer the questions that follow.			
			ctions $Q_4^-(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O(l)$	E^{θ} (V) + 1.49	
		M^{3+}	$aq) + e^- \rightarrow M^{2+}(aq)$	+0.77	
		$N^{2+}(a$	$aq) + 2e^- \rightarrow N(s)$	+0.34	
		P ²⁺ (a	$(eq) + 2e^- \rightarrow P(s)$	-0.23	
		$Q_2(g)$	$) + 2e^{-} \rightarrow 2Q^{-}(g)$	+2.87	
		$R_2(g)$	$(1) + 2e^- \rightarrow 2R^-(g)$	+1.36	
		(i)	State whether acidified MnO ₄ ⁻ can oxidise M ²⁺ . Give a reason.	(2 marks)	
		(ii)	Select two half-cells which when combined will give the highest e.	m.f. (1 mark)	
		(iii)	Write the cell representation for the cell formed in b (ii).	(1 mark)	
		(iv)	Calculate the \mathbf{E}^{θ} value for the cell formed in b (iii).	(2 marks)	

Kenya Certificate of Secondary Education, 2019 233/2

	(c)	A mass of 1.24 g of a divalent metal was deposited when a current of 6A was passed through a solution of the metal sulphate for 12 minutes. Determine the relative atomic		
		mass of the metal. (1 Faraday = $96,500 \text{ C mol}^{-1}$)	(3 marks)	
189			,	
	(d)	State two applications of electrolysis.	(1 mark)	

247

7.	(a)	Wh	at is meant by rate of reaction.	(1 mark)

	(b)	In the	he space provided, sketch the diagram of a set-up that can be used to detern of reaction between manganese(IV) oxide and hydrogen peroxide.	nine the (3 marks)
	(c)	A stu as sh	udent placed a small amount of liquid bromine at the bottom of a sealed gas nown in Figure 4 .	jar of air
			Air	
			Liquid bromine	8
			Figure 4	
		(i)	Describe what will be observed:	(1 mark)
			I. after two minutes	
			II. after 30 minutes	

Kenya Certificate of Secondary Education, 2019 233/2

	(ii)	Use the Kinetic theory to explain the observations:	(2 marks)
		I. after 2 minutes	
		II. after 30 minutes	
(d)	Some	plants have seeds that contain vegetable oil.	
	(i)	Describe how the oil can be obtained from the seeds.	(3 marks)
	(ii)	Explain how it could be confirmed that the liquid obtained from the s	eeds is oil. (1 mark)

THIS IS THE LAST PRINTED PAGE.