NAME:
ADM NO: \qquad CLASS:
233/2
CHEMISTRY
PAPER 2

MARKING SCHEME

INSTRUCTIONS TO CANDIDATES:

Answer all the questions in the spaces provided.
Mathematical tables and electronic calculators may be used.
All working must be clearly shown where necessary.

1. The grid below represents part of the periodic table. Study it and answerthe questions that follow.

(a) Identity the family name to which element F and G belong.
(b) Name the type of bond formed when a and F belong.
(c) Write the formula of the oxide formed when D reacts with oxygen.
(d) What type of oxide is formed in (c) above.
(e) Compare the atomic radii of F and D. Explain.
(f) Element F burns in air to form two products. Write two equations of the two products

> formed.
(g) Stat e two uses of element K and its compounds.
2. (a) Name the following organic compounds.
(i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{Br}) \mathrm{CH}_{3}$
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$
(ii) $\mathrm{CH}_{3}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{OH}{ }^{\square}$ он

(iii) $\mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}(\mathrm{Br}) \mathrm{CH}_{3}$

(b) Study the flow chart below and answer the questions that follow.

Name:-
(i) The process that occur in steps marked I, II and IV. (1 mk)
(ii) The reagent and conditions in step II.
(iii) Draw the structural formula of substance X , give the name of the substance.

(c) The diagram below shows a structure of a cleansing agent.

R

(i) Name the cleansing agent above.
(ii) State the type of cleansing agent above,
(1 mk)
(iii) Name the material added to the cleansing agent in order to improve its cleansing property.
3. (a) $50 \mathrm{~cm}^{3}$ of 1 M copper (II) Sulphate solution was placed in a $100 \mathrm{~cm}^{3}$ plastic beaker. The temperature of the solution was measured. Excess metal A powder was added to the solution, the mixture stirred and the maximum temperature was repeated using powder of metal B and 6 , The results obtained are given in the table below.

	\mathbf{A}	\mathbf{B}	\mathbf{C}
Maximum temperature ${ }^{\circ} \mathrm{C}$	2.63	31.7	22.0
Initial temperature $\left({ }^{\circ} \mathrm{C}\right)$	22.0	22.0	22.0

(i) Arrange the metal A, B, C and Copper in order of reactivity starting with the least reactive. Give reasons for the order.
(ii) Other than temperature change, state one other observation that was made when the most reactive metal was added to the copper (II) Sulphate solution.
(b) The Standard enthalpy change of formation of methanol is $-239 \mathrm{Kjmol}-1$
(i) Write the thermal chemical equation for the standard enthalpy change of formation of methanol.
(ii) Use the following data to calculate the enthalpy change for the manafacture of methanol from carbon (II) oxide and hydrogen.

$$
\begin{aligned}
& \mathrm{CO}_{(\mathrm{g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2} ; \quad \Delta \mathrm{H}^{\ominus}=-283 \mathrm{Kj} / \mathrm{mol} \\
& \mathrm{H}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l}) ;}=\Delta \mathrm{H}^{\ominus}=-286 \mathrm{Kj} / \mathrm{mol} \\
& \mathrm{CH}_{3} \mathrm{OH}+3 / 2 \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O} ; \Delta \mathrm{H}^{\mathrm{e}}=-715 \mathrm{Kj} / \mathrm{mol}
\end{aligned}
$$

(c) Study the information given in the table below and answer the questions that follow.

Bond \quad Bond energy (Kjmol^{-1}
C -H
414

$\mathrm{Cl}-\mathrm{Cl}$	244
$\mathrm{C}-\mathrm{Cl}$	326
$\mathrm{H}-\mathrm{Cl}$	431

Calculate the enthalpy change for the reaction.
4. Carbon IV oxide is produced when solid X is heated strongly. It can also be prepared by adding dilute hydrochloric acid to solid X . The reaction between X and dilute Sulphuric acid, however gradually slows down and stops.
(a) (i) Name solid X.
(ii) Write an ionic equation for the reaction of X and acid.
(b) A gas jar full of Carbon (IV) oxide was inverted over burning candle.
(i) State the ebservations made.
(ii) What two properties of carbon (IV) oxide does this observation illustrate.
(iii) Name a practical everyday use of this property of carbon (IV) oxide.
(c) The flow diagram below shows some reactions of calcium compounds.

5. A piece of sodium metal which had been exposed to air, was found to be covered with a white powder. The piece was dropped into 50 g of ethanol and $2400 \mathrm{~cm}^{3}$ of hydrogen gas measured at room temperature and pressure was obtained. The unused ethanol was distilled off and a white solid remained $\left(\mathrm{Na}=23\right.$, motar gas volume at room temperature and pressure $\left.=24 \mathrm{dm}^{3}\right)$
(i) Name the othersubstance formed other than hydrogen.
(ii) Calculate the mass of sodium that dissolved in ethanol.
(iii) What mass of ethanol was distilled of assuming there was no loss during the process?
(iv) The ethanol was distilled off at $80^{\circ} \mathrm{C}$, while the white solid remained unaffected at this temperature. What is the difference in structure of ethanol and the white solid.
(b) Name another liquid which produces;
(i) Hydrogen with sodium metal.
(2 mks)
(ii) What difference would you observe if identical pieces of sodium were dropped separately into small beakers containing ethanol and this other liquid?
(1 mk)
(c) (i) Name the white powder coating the original piece of sodium, explain how it was formed.
(ii) Describe one test by which you could identify white powder which originally covered sodium.
6. The scheme below shows various reactions starting with hydrogen and nitrogen. Study it carefully and answer the questions that follow.

(i) Give one condition other than the of a catalyst that would favour the reaction in step I.

(ii) Name the catalystsaused in step I and II.
(1 mk)
(2 mks)
(iii) Name substances $\mathrm{P}, \mathrm{Q}, \mathrm{X}$ and Y .
(2 mks)
(iv) Write equations for the reactions that takes kplace in step II.
(v) Name the oxidizing agent for the reaction that takes place in step IV.
(vi) Why is a concentrated nitric acid transported on aluminium container and not copper?
(1 mk)
7. Use standard electric potentials for elements $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and F given below to answer the questions that follow.

$$
\begin{aligned}
& \mathrm{E}^{\text {e (volts) }} \\
& \mathrm{A}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}-\rightleftharpoons \mathrm{A}_{(\mathrm{s})} \\
& \text {-2.90 } \\
& \mathrm{B}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}-\rightleftharpoons \mathrm{B}_{(\mathrm{s})} \\
& \mathrm{C}^{+}{ }_{(\mathrm{aq})}+2 \mathrm{e}-\rightleftharpoons \quad 1 / 2 \mathrm{C}_{(\mathrm{g})} \\
& \mathrm{D}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}-\rightleftharpoons \mathrm{D}_{(\mathrm{s})}+0.34 \\
& 1 / 2 \mathrm{~F}_{2(\mathrm{~g})}+\mathrm{e}-\underset{\rightleftharpoons}{\rightleftharpoons} \mathrm{F}_{(\mathrm{aq})}^{-}+2.87
\end{aligned}
$$

(i) Which element is likelyto be hydrogen? Give a reason for your answer.
(ii) What is the E^{8} value of the strongest reducing.
(iii) In the space provided, draw a labeled diagram of the electrochemical cell that would be obtained when half-cells of elements B and D are combined.
(iv) Calculate the E^{\ominus} value of the strongest reducing agent.
(b) During the electrolysis of aqueous copper II Sulphate using copper electrodes, al current of 0.2 amperes was passed through the cell for 5 hours.
(i) Write an ionic equation for the reaction that took place at the anode.
(ii) Determine the change in mass of the anode whichoccurred as a result of the electrolysis process. (C.u = 63.5, 1 Faraday $=96,500$ coulombs)

