\qquad
233/3
CHEMISTRY

FORM 3

TIME: $21 / 4$ HOURS

END OF TERM (III) EXAMINATION -2019

Kenya Certificate of Secondary Education (K.C.S.E)

233/3
CHEMISTRY
FORM 3
TIME: 2 HOURS

For examiners use only

SECTION	QUESTION	CANDIDATE'S SCORE
1	$e^{e^{2}} 22$	
2	12	
3	6	

1. You are provided with:

- Solution K monobasic and HX
- Solution L is sodium hydroxide containing 0.8 g solute in $200 \mathrm{~cm}^{3}$ of solution
- Solution M in anhydrous metal carbonate $\mathrm{Mg} \mathrm{CO}_{3}$ (R.f.m. 106) containing 5.3 g of the carbonate dissolved in $500 \mathrm{~cm}_{3}$ solution

You are required to:-
Standardize the monobasic acid and experimentally determine the equation for the reaction Between the acid HX and the carbonate $\mathrm{M}_{2} \mathrm{CO}_{3}$

Procedure I

- Fill the burette with solution K using pipette and pipette filler transfer $25 \mathrm{~cm}^{3}$ of solution L into a clean dry conical flask add 2 drops of methyl orange indicator and Titrate with solution K in the burette. Repeat the procedure t wo more times to complete the table (4 mks)
Table 1

(a) Determine the average volume of solution K used in cm^{3}
(lmk)
(b) (i) Calculate the concentration of solution L in moles per litre
\qquad
(ii) Calculate the moles solution L that reacted with K
(iii) Calculate the concentration of solution K in moles per litre

Procedure II

Using a pipette and pipette filler, transfer $25 \mathrm{~cm}^{3}$ of solution M into a clean dry conical flask. Titrate with solution K in the burette using methyl orange as the indicator. Record your results in the table II. Repeat the procedure two more times to complete the table.
(4mks)
Table II

Experiment	1	2	
Final burette reading $\left(\mathrm{cm}^{3}\right)$			3
Initial burette re. $\cdot \operatorname{ding}\left(\mathrm{cm}^{3}\right)$			
Volume of K used $\left(\mathrm{cm}^{3}\right)$			

(a) Determine the average volume of solution K used
(lmk)
(b) Calculate the concentration of solution M in moles per litre
(d) Calculate the number of moles of solution K in the average volume
\qquad
\qquad
(e) From your answers in parts (c) and (d) above how many moles of solution

K reacted with 1 mole of solution M
\qquad
\qquad
\qquad
\qquad
(f) Hence write an equation for the reaction between M and K
\qquad
\qquad
2. You are provided with solid P , carry out the following tests
(a) Scoop half a spatula full of solid P and put it in a dry test tube. Heat strongly and test for the gases produced

Observation	Inferences	
	$(1 \mathrm{mk})$	
		$(1 \mathrm{mk})$

(b) Put the remaining solid P in a boiling tube, add $5 \mathrm{~cm}^{3}$ of distilled water and shake thoroughly.

Divide the resulting solution into 5 portions.
(i) To the first portion add lead (II) nitrate solution

Observation	hiferences
	(1mk)

(ii) To the $2^{\text {nd }}$ portion add Barium nitrate solution followed by addition of dilute nitric acid

Observation	Inferences		
	$(1 \mathrm{mk})$		$(1 \mathrm{mk})$

(iii) To the $3^{\text {rd }}$ portion add Sodium Hydroxide solution dropwise until in excess

Observation		Inferences of
(1mk)		

(iv) To the $4^{\text {th }}$ portion add aquegus ammonia solution until in excess

Observation	Inferences	

(v) To the $5^{\text {th }}$ portion add Sodium Sulphate Solution

Observation	Inferences		
	$(1 \mathrm{mk})$		$(1 \mathrm{mk})$

3. You are provided with Solid G. Carry out the tests indicated below
(a) Scoop half a spatula end full of solid G and bum it over the Bunsen bumer flame

(b) Place the remaining Solid G in a boiling tube, add $4 \mathrm{~cm}^{3}$ of distilled water and shake Thoroughly

Observation	Inferences
	$(1 \mathrm{mk})$

(c) To the resulting solution in (b) above add 3 drops of acidified potassium Manganate (VII)

Solution

