NAME \qquad
SCHOOL
CANDIDATES SIGN
DATE \qquad
232/3
PHYSICS
PAPER 3
FORM THREE
TIME: 2 ½ HOURS

END OF TERM (III) EXAMINATION -2019
 Kenya Certificate of Secondary Education (K.C.S.E) 232/3
 PHYSICS
 PAPER 3
 FORM THREE
 TIME: $2^{1 ⁄ 2} \mathbf{2}$ HOURS

INSTRUCTIONS TO THE CANDIDATES

- Write your name, Admission number, class and date of examination.
- Answer all the questions in the spaces provided.
- You are supposed to spend the first 15 minutes of the $21 / 2$ hours allowed for this paper reading the whole paper carefully before commencing your work.
- Marks are given for clear record of the observations made, their suitability and accuracy.
- Candidates are advised to record their obsefvations as soon as they are made.
- Non-programmable silent electronic calculators may be used.

EOR EXAMINERS USE ONLY

	PARPA						PART B							TOTAL
Question 1	$\mathrm{a}^{\text {a }}$	b	c	d	e	f	a	b	c	d	v	vi	vii	
Maximum Score	2	1	1	2	2	2	3	1	2	2	1	2	1	
Candidate Score														

Question 2	1	i	ii	iii	iv	Total
Maximum Score	6	5	3	4	2	
Candidate Score						

GRAND TOTAL \square

QUESTION 1

PART A
Q1. You are provided with the following apparatus
Meter rule
A marble
Complete stand
20 g mass
A piece of thread
Micrometer screw gauge
A piece of cello tape

Proceed as follows

a) Using the micrometer screw gauge, determine the diameter of the marble
d \qquad mm
$=$ \qquad cm
b) Using the piece of thread and the stand provided, balance the metre rule and determine its centre of gravity G
$G=$ \qquad cm mark
c) Using the piece of cellotape, fix the marble on the metre rule 40 cm from the support G obtained in (b) above. Balance the system by suspending the 20 g mass using the piece of thread as shown in the figure

d) Determine the value of x
$X=$ \qquad cm
e) Use the principle of moments to calculate M, the mass of the marble in grammes (assume that the mass of cello tape is negligible)
f) Determine the constant n given that $\mathrm{n}=\frac{6 m}{\pi d^{3}}$.

PART B

Q1. You are provided with the following
A soft board
A rectangular glass block
A white sheet of paper
A 30 cm ruler
A beam balance (to be shared)
Two optical pins
Proceed as follows
a) Use the ruler to measure the length, width and height of the glass block

Length $\mathrm{L}=$ \qquad cm
Width W = \qquad cm

Height $\mathrm{H}=$ \qquad cm
b) Using the beam balance, determine the mass M of the glass block
$M=$ \qquad g
c) Calculate the volume V of the glass block
d) Determine the density of the glass block
e) (i) Set the apparatus as shown in fig

(ii) Draw the outline ABCD of the glass block
(iii) Fix an optical pin O on the line, AB , very close to the block and near edge B
(iv) By viewing from the side DC , spot the virtual image I of the optical pin O . Now fix optical pin S on the side BC such that the image I of the pin O and pin S are on a straight line when viewed from the side DC as shown In the figure above
Remove the glass block and,
(v) Measure the length y from D to S
$Y=$ \qquad cm
(vi) Given that $\mathrm{K}=\frac{W}{y}$, determine the value of K
(vii) Name the quantity represented by the value K

QUESTION 2

Q2. You are provided with the following apparatus

- A wire W mounted on a mm scale

Two dry cells
A cell holder
A voltmeter
Five connecting wires
A switch
A jockey
Proceed as follows;
a) Set the apparatus as shown in the figure below. Use the jockey to fix the length L of wire W at 15 cm

b) Close the switch and record the voltmeter reading V in the table.
c) Adjust the length L to 20 cm and repeat step b above. Report for other values of L in the table and complete the table.
(6 mks)

$\mathrm{L}(\mathrm{cm})$	15	c	20	25	30	40	
$\mathrm{~V}(\mathrm{v})$							
$\mathrm{I} / \mathrm{L}\left(\mathrm{cm}^{-1}\right)$							
$\mathrm{I} / \mathrm{V}\left(\mathrm{V}^{-1}\right)$							

e) Determine the slope of the graph
f) Given that the equation of the graph is $\frac{1}{v}=\frac{K_{1}}{L}+K_{2}$ determine the value of (i) K_{1}
(ii) K_{2}
g) Determine the value of electromotive force (E) of the cells given that
$\mathrm{K}_{2}=1 / E$

