# CHEMISTRY MARKING SCHEME K.C.S.E. 1995 <br> PAPER 233/1 

1. a) $x-2,8,3, \sqrt{ }(1 \mathrm{mks})$

Y-2, $86 \sqrt{ }$ (1mks)
b) $\quad \mathrm{X}_{2} \mathrm{Y}_{3} \sqrt{ } \mathrm{OR} \mathrm{Al}_{2} \mathrm{~S}_{3}(1 \mathrm{mk})$
2. The mixture would turn brown due to excess $\mathrm{Br}_{2(\mathrm{~g})} / \mathrm{H}+$ ions removes $\mathrm{OH}-$ ions from the mixture / equilibrium shifts to the left/observation not there BUT equilibrium shift to the left/ more Br formed for observation (2mks)
3. 1 mole CaCO 32 moles of HCL

Therefore $0.1(1 / 2)$ mole CaO3 0.2 Mole ( $1 / 2$ )
$\mathrm{CaCO} 3=40+12+48=100 \mathrm{~g}(1 / 2)$
Therefore $15 \mathrm{~g} \mathrm{CaCO} 3=15=0.15$ Moles
100 g
Excess moles $0.15-0.05(1 / 2)$
Excess mass $=(0.05) \times 100(1 / 2)=5 \mathrm{~g}$
4. a) II because it requires little soap to lather (2mks)
b) III has temporary ( $1 / 2$ ) hardness, which is removed by boiling ( $1 / 2$ ) (1mk)

5 a) sisal/ Cotton/ wool/ silk /jule/hemp/fur/hair (1mk)
b) They are stronger than natural fibres/OR are not easily affected by chemicals/lasts longer /durable/ can be produced easily in a large scale therefore cheaper (Reject. Strong bonds)
(1mk)
6. a) Pass the mixture through H 2 SO 4 which absorbs D then collect by downward delivery/pass the mixture though $\mathrm{NaoH}(\mathrm{aq})$ which absorb D and then collect by downward delivery (upward displacement)
b) Ammonia ( $1 / 2$ ) - Gas- D reacts with the acid ( $1 / 2$ )/basic/ is less denser / lighter than air.
( 1 mk )
7 II Because pure substances have sharp MP and BP as shown by the flat regions of curve II. (accept systematic)
(2mks)
8. a) $2 \mathrm{H}_{2} \mathrm{SO}_{4}$
b) Insoluble in water/slightly soluble in water

To ensure that the air that occupied the apparatus initially is expected (reject impurities)
9. When circuit is completed bulb lights ( $1 / 2$ ) brown substance ( $1 / 2$ ) formed grey ( $1 / 2$ ) substance formed on cathode; because PbBr 2 acts as an electrolyte ( $1 / 2$ )/free $/$ mobile ( $1 / 2$ ) ions; lead ions gain electrons to form $\mathrm{pb}(1 / 2)$ (Lead) and loses electrons to form ( $1 / 2$ ) Bromine ( Br )
(Equations show ions current flow)
10. a) To remove oxide coating which could inhibit reaction
b) ORP
11. a) addition
b) $\quad \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \quad \mathrm{CH} 3 \mathrm{CHCICH} 2 \mathrm{CL}(\mathrm{g})$
OR

$$
\mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{Cl}_{2} \quad(1 \mathrm{mk})
$$

12. Hydrogen forms compounds by losing one electron like group I elements or by gaining one electron like group VII element/Hydrogen has one electron in outermost shell.
(2mks)
$\mathrm{Al}(\mathrm{s})+6 \mathrm{H}+(\mathrm{aq}) \quad 2 \mathrm{Al3}+(\mathrm{aq})+\square(\mathrm{g})$
$\mathrm{A} 1(\mathrm{~s})+6 \mathrm{OH}-(\mathrm{aq}) \longrightarrow \mathrm{A} 1(\mathrm{OH}) \square(\mathrm{aq})+2 \mathrm{H} \square \mathrm{O}(\mathrm{g})$
13. a) Wood ash is basic/ alkaline and would therefore react with aluminium Utensils/amphoteric/ $2 \mathrm{~A}(\mathrm{~s})+6 \mathrm{H}$
$+(\mathrm{aq}) 2 \mathrm{~A} 13+(\mathrm{aq}))+3 \mathrm{H}_{2}(\mathrm{~g})$
(2mks)
b) It is strong $(1 / 2)$ and not easily corroded ( $1 / 2$ ) / Does not rust ( 1 mk )
14. a) $(\mathrm{C} 3 \mathrm{H} 6 \mathrm{O}) \mathrm{n}=116$

$$
(3 \times 12+6+16) \mathrm{n}=116(1 / 2) \text { Molecular formulae }=2(\mathrm{C} \square \mathrm{H} \square \mathrm{O})
$$

$$
58 \mathrm{n}=116(1 / 2) \quad=\quad \mathrm{C}_{3} \mathrm{H}_{12} \mathrm{O}_{2(1 / 2)}
$$

$$
\begin{equation*}
\mathrm{N}=116=2(1 / 2) \tag{2mks}
\end{equation*}
$$

58
b)Percentage of Carbon $=\underline{12 \times 6 x} \quad 1000(1 / 2)=62.07(1 / 2)$ Range $(62.05-62)$ 116

OR
$\frac{3 \times 12}{58} \times 100(1 / 2)=62.07(1 / 2)($ mark consequently $)$
15. Cool the mixture to a temperature below $-196^{\circ} \mathrm{C}$ to form a liquid then start warming, Nitrogen distils off a gas at - 1960 (cool first)
16.a)

| Alkaline | Formula | Heat of combustion $\left(\triangle \mathrm{Hc}^{2}\right) \mathrm{kjmol}^{-1}$ |
| :--- | :--- | :---: |
| Methane | $\mathrm{CH}_{4}$ | -890 |
| Ethane | $\mathrm{C}_{2} \mathrm{H}$ | -1560 |
| Propane | $\mathrm{C}_{3} \mathrm{H}_{8}$ | -2220 |
| Butane | $\mathrm{C}_{4} \mathrm{H}_{10}$ | $-2870-2880(1 / 2)$ |

(Correct answer only -ve sign)
(award full mark if figure is not $\pm$ )
$2220-1560=660$
$1560-890=670$
$2220+650=2870$
(Accept any value 2870)Any calculation
(1mk)
b) $\triangle \mathrm{Hc}$ is an exothermic reaction.
17. a) I-Molten sulphur
b) II - Superheated water / water.
18. a) $2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Zncl} \square(\mathrm{aq})+\mathrm{H} 2(\mathrm{~g})\left({ }^{-1 / 2}\right)$ states $)$
b) $\quad 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}\left(\mathrm{~g} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})(\mathrm{Not} \mathrm{L}) \quad(-1 / 2\right.$ state $)$
19. Hydrogen, because it is lighter/ less denser / diffuses faster ( 2 mks )
20.

21. W because its solubility decreases with increase in temperature
a)
i) NO-3: O3- $=-6$

$$
\ldots \mathrm{N}=+5(+5) \quad(\text { don't mark formula) }
$$

(1mk)
ii) NO
$\mathrm{O}=02 . \mathrm{N}=+2$
(1mk)
b) Reduction ( $1 / 2$ ) because the nitrogen ion in $\mathrm{NO} \square$ gains 3 electrons ( ${ }^{1} / 2$ ) to form the nitrogen in NO.
(1mks)
23. The chloride form ions in water which conduct electric current. NO ions are formed in methylbenzene /chloride exists in methylbenzene as molecules.
24. A gas with a smell of rotten eggs is formed $\mathrm{H}_{2} \mathrm{~S}$ gas is formed / A greenish solution is formed? Effervescence / A gas is produced / Black solid dissolves.
25. Dissolve the potassium sulphate $(1 / 2)$ in water, dissolve $(1 / 2)$ the lead carbonate in the nitric acid, mix the two solutions ( $1 / 2$ ) and filter ( $1 / 2$ ) off the lead sulphate precipitate//
Dissolve lead carbonate in nitric acid add solid $\mathrm{pbSO}_{4}$ and filter off $\left(\max ^{1} 1 / 2\right) / /$
Dissolve this in $\mathrm{HNO}_{3}$ and add solid $\mathrm{pbCO}_{3}$ and filter off the precipitate.
26. Enthalpy of neutralization between $\mathrm{CH}_{3} \mathrm{CaOH}_{(\mathrm{aq})}$ and $\mathrm{NaOH}_{(\mathrm{aq})}$ is lower than that between HCl (aq) and NaOH because $\mathrm{CH}_{3} \mathrm{CaOH}($ aq $)$ is a weak acid which does not dissociate fully in water thus some of heat produced is used for dissociation fully dissociated and partially dissociated. ( 2 mks )
27. $\mathrm{Ca}(\mathrm{OH}) 2(\mathrm{aq})$ forms white precipitate (1/2) with CO 2 Can be observed $\mathrm{NaOH}(1 / 2)(\mathrm{aq})$ does not form a precipitate.
28. a) Structural formula

| H | H | H | H | Butan - 101 But-2-01 |
| :---: | :---: | :---: | :---: | :---: |
| I | I | 1 | 1 | Butan-2-01(1/2) |
| H-- $\mathrm{C}-$ | - | - | $\mathrm{C}-\mathrm{OH}(1 / 2)$ | Butanol |
| 1 | 1 | 1 | 1 | But-01-01 |
| H | H | H | H |  |

b) $\quad 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}_{(1)}+2 \mathrm{~K}_{(\mathrm{s})} \rightarrow 2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OK}^{+}(\mathrm{l})+\mathrm{H}_{2}(\mathrm{~g})$
$2 \mathrm{~S}_{9} \mathrm{H} 9 \mathrm{OH}+2 \mathrm{~K} \longrightarrow 2 \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OK}+\mathrm{H}_{2}$
(Imk)
29. a) Yield would increase ( $1 / 2$ ) since $\triangle \mathrm{H}$ us position/ thus increase in temperature shift the equilibrium to the right . Since $\triangle H$ is positive $(1 / 2)(1 \mathrm{mk})$
No effect ( $1 / 2$ ) volume on the left ( $1 / 2$ ) is the same as on the right $/ /$ moles on left same as moles on the right.( 1 mk )
30.
a) 100 g of $\mathrm{Pa} \longrightarrow 50 \mathrm{~g}$ if $\mathrm{Pa} \longrightarrow 25 \mathrm{~g} \mathrm{~Pa} \longrightarrow 12.5(\mathrm{~g})$

$$
\begin{equation*}
\ldots 3 t 1 / 2=81(1 / 2) \mathrm{t}=1 / 2=27 \text { days }(1 / 2) \tag{2mks}
\end{equation*}
$$

b) Mass number - $233(1 / 2)$

Atomic number - 92(1/2)

## CHEMISTRY MARKING SCHEME <br> PAPER 233 / 2 K.C.S.E 1995

1. a) K and N because they are in the same group OR loses 2 electrons/same number or electrons sins the outer energy level
(2mk)
b) $\mathrm{L}_{2} \mathrm{O}_{2} \mathrm{OR} \mathrm{L}_{2} \mathrm{O}$
c) L, because it has 7 electrons in its outermost energy level
d) M , Because its ionic radius is bigger than atomic radius so its tendency to donate its electrons is high
(e) M and N arc in the same period. Across the period ionic radius decrease due to increase in nuclear charge OR nuclear charge of N is greater than M . L gains electrons to form L . There's increase in repulsion of electrons
2. (a) (i) Liquid P - concentrated sulphuric acid

Solid Q- Aluminium (III) chloride OR AICI3
(ii) Anhydrous calcium chloride or fused calcium or lumps of calcium chloride
(1 mk) (iii) The blue litmus paper turns red because the $\mathrm{HCI}(\mathrm{g})$ that does not react with the aluminum dissolves in the water making it acidic.
(2mks)
(b) (i) $\mathrm{NH}_{4}+\mathrm{HCI}(\mathrm{g}) \rightarrow \mathrm{NH}_{4} \mathrm{CI}(\mathrm{g})$
( 1 mk )
(ii) $\mathrm{HCI}(\mathrm{g})+\mathrm{NH}_{4}(\mathrm{~g}) \rightarrow \mathrm{NH}_{4} \mathrm{CI}(\mathrm{g})(1 / 2) \quad$ Penalize $1 / 2$ for wrong states)

Moles of HCL $=\underline{200}_{24000}^{1 / 2}=0.008331 / 2$ moles HCI
0.00833 moles $\mathrm{HCI}=0.00833$ moles $\mathrm{NH}_{4} \mathrm{CI}$ $\mathrm{NH}_{4} \mathrm{CI}=14+4+3.35=53.5 \mathrm{~g} \quad 1 / 2$ $(0.00833)(53.5)=0.446 \mathrm{~g}$ ( answers must be to 3 dp ) $\mathrm{CH}_{3} \mathrm{OH}+3 \mathrm{O} \rightarrow \mathrm{CO}_{2}+$ Heat (penalize $1 / 2$ if wrong unit for answers)
( 3 mks )
3.
(a) $\quad 2 \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(b) (i) $22.98-22.11=0.87 \mathrm{~g}$ methanol
R.F.M CH3 $\mathrm{OH}=12+3+17=32(1 / 2)$
$0.87(1 / 2)=0.02718(1 / 2)$ moles OR 0.02719 moles
Temp rise $=27-20=7(1 / 2) \quad(2 \mathrm{mks})$
(ii) Heat change $=\triangle H=500 \times 7(1 / 2) \times 4.2=14700 \mathrm{j}(1 / 2)$ if unit missing)
( 2 mks )
(iii) 0.027 moles $=14700 \mathrm{~J}$

$$
\begin{aligned}
1 \mathrm{~mole}= & {[14700] \times[1]=544.4 \mathrm{kjmol}^{-1} } \\
& {[0.027] \quad[1000] } \\
& {[14700]=540.7 \mathrm{kjmol}^{-1} } \\
& {[0.022718] }
\end{aligned}
$$

(c) This value is lower than the theoretical value because some of the heat is lost to the surrounding because apparatus is not shielded. Some more heat is also lost to the apparatus. Incomplete combustion of methanol
(d)


4 (a) (i) Sulphur dioxide
reaction pail
( mk)
(ii) $2 \operatorname{cuFeS}_{2}$ (s) $+4 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{FeO}$ (s) $+\mathrm{Cu}_{2} \mathrm{~S}(\mathrm{~s})+3 \mathrm{SO}_{2}(\mathrm{~g})$
( 1 mk )
(iii) $\mathrm{Fe}^{2}$
(iv) P is carbon dioxide/carbon monoxide ( 1 mk )
(v) Reduction - oxidation (Redox) reaction because $\mathrm{Cu}_{2} \mathrm{O}$ is reduced to Cu while coke to $\mathrm{CO}_{2}(\mathrm{~g})$ ( 2 mks )
(b)

(c) 1 mole of $\mathrm{CuFeS}=1$ mole Cu
$210 \mathrm{~kg} \mathrm{Cu}=$ OR $\frac{210}{63.5} \times \frac{183.5}{810} \times 100$ or mass Cu in cores $=\frac{810 \times 63.6}{183.5}=$

$$
\% \mathrm{Cu}=\frac{210}{280} \times 100=74.9 \%
$$

3.3 moles of $\mathrm{Cu}(\mathrm{s})=3.3$ moles CuFeS2

$$
\mathrm{CuFeS}_{2}=63.5+56+64=183.5 \mathrm{~g}
$$

$$
=183.5 \times 3.3=605.6 \times 10^{3} \mathrm{~g}
$$

$$
\text { Purity }=\frac{605.6 \times 1000 \times 100}{810 \times 1000}=74.75 \%
$$

(d) Acid rain may from due to presence of $\mathrm{SO}_{2}(\mathrm{~g})$ and $\mathrm{CO}_{2}(\mathrm{~g})$ dumping of the waste like the slag prevent vegetation growth large gullies left after the ore is excavated destroys the environment
(Do not accept presence of heat)
(1 mk)
5. (a)

(iii) $\mathrm{Zn}^{2+}(\mathrm{aq})+4 \mathrm{NH}^{3}(\mathrm{aq}) \rightarrow\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)^{4}\right.$
(iv) Brown coloured gas OR reddish brown (1 mk)
(v) Addition of anhydrous or white CuSo 4 copper (II) sulphate which turns blue in presence of water or cobalt chloride paper which turns pink (1 mk)
(b) (i) One of the salts in R is not soluble in water because a residue is formed on addition of water
(ii) $\mathrm{CO}_{3}{ }^{2-}$ because $\mathrm{CO}_{2}(\mathrm{~g})$ is produced on addition of acid
(iii) $\mathrm{Pb}^{2-}(\mathrm{aq})$
(c) Zinc nitrate (1 mk)

Lead carbonate (1mk)
6. (a) (i) Bitumen, it has highest B.P
(2 mks)
(ii) Fractional distillation. During the distillation petrol would distil off at $175^{\circ}$ and diesel could distil at $350^{\circ} \mathrm{C}$
( 2 mks )
(iii) Each component is mixture of hydrocarbons which have different boiling points
(iv) Methane $\mathrm{CH}_{4}(\mathrm{~g})$

Ethane $\mathrm{C}_{2} \mathrm{H}_{6}$
Propane $\mathrm{C}_{3} \mathrm{H}_{8}$
Butane $\mathrm{C}_{4} \mathrm{H}_{10}$
(b) Burning it in limited amount of air will produce carbon monoxide which is poisonous (2mks)
(c) Manufacture of tar used in tarmac/ sealing of roofs

7 (a) (i) Liquid L is water
(ii) Black copper (II) oxide changes to reddish brown because it is reduced to copper by ammonia ( 1 mk )
(iii) $2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{CuO}$ (s) $\quad 3 \mathrm{Cu}(\mathrm{s})+\mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}$ (I) (1 mk)
(iv) I 2 moles $\mathrm{NH}_{3} \Rightarrow 1$ mole N2
$320 \mathrm{~cm}^{3} \mathrm{NH}_{3}-\frac{320}{2}=160 \mathrm{~cm}^{3}$
II Moles of $\mathrm{NH}_{3}=\underline{320}=0.133$
24000
2 moles of $\mathrm{NH}_{3}=3$ moles CuO
Moles $\mathrm{pfCuO}-\underline{320} \times \underline{1 / 2 \times 3} \quad 1 / 5=0.02$ moles
RFM OF CuO $=63.5+16=79.5$
Mass of $\mathrm{CuO}=0.02 \times 79.5 \mathrm{~g}=1.59 \mathrm{~g}$
(3mks)
(v) The excess ammonia from the reaction dissolves in the water in the beaker to form ammonium hydroxide which is a weak alkali or base of pH about 10 . ( 2 mks )
(b) The burning splint would be extinguished
(c) Because it is cheaper and ammonia is made from nitrogen

## K.C.S.E 1996 CHEMISTRY MARKING SCHEME <br> PAPER 233/1

1. Air is less dense than carbon dioxide and so it enters the polous pot faster than carbon dioxide out of it. This sets up a higher pressure; in the pot and the level rises as shown:
2. $\quad \mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \mathrm{OR} \quad \frac{\mathrm{V} 1}{\mathrm{I}_{2}}=\frac{\mathrm{V}_{2}}{\mathrm{I}_{2}}$
(Charles' Law)

$$
\begin{aligned}
\mathrm{V}_{2}=\frac{\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{1}}{\mathrm{~T}_{1} \mathrm{P}_{2}} & \mathrm{~V} 2=\frac{250 \times 315}{300} \\
& =\frac{750 \times 250 \times 315}{300 \times 750}=262.5
\end{aligned}
$$

3. a) Moles of $\mathrm{Zn}=\frac{196}{65.4} \quad 0.03$

Holes of HCL $=\frac{100 \times 0.2}{1000}=0.02$
Nine was in excess
b) $\quad$ Moles of $\mathrm{H}_{2}$ produced $=0.01$

Volume $=22.4 \times 0.01=0.224$ litres or $224 \mathrm{~cm}^{4}$
4. a) increase in temperature would lower the yield of Nitrogen, this is because the reaction is exothermic and equilibrium shift to the left.

5.


It has a lone pair of electrons which it uses to form a dative bond with H ions
6.
$\begin{array}{ll}\text { a) } & \text { G } \\ \text { b) } & \mathrm{E}\end{array}$
7. a) U-V Light/ sunlight
b)


8. Sulphur dioxide, it reacts with limewater being an acid gas
9. Add solid hydrogen carbonate; $\mathrm{CH}_{3} \mathrm{COOH}$ produces effervescence; while $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ does not (Accept any other carbonate that behaves
10 The ionic end lowers the surface tensions of water, facilitating mixing while the non- ionic end (non-polar end) mixes with grease, dislodging it from the fabric.
11. Number of neutrons $=1$

Number of electrons $=1$
$12 \quad 2 \mathrm{mg}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{MgO}_{(\mathrm{s})}$ $3 \mathrm{Mg}_{(\mathrm{s})}+\mathrm{N}_{2}(\mathrm{~g}) \longrightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2(\mathrm{~s})}$
13. I, production of carbon dioxide or carbon is oxidized to its highest oxidation number/ carbon dioxide cannot burn further or carbon dioxide cannot burn further or carbon monoxide can burn further.
14. Increase in pressure would shift the equilibrium to the left; since in pressure favors the reaction will produce less volume of gas.
15. a) X, both energy levels are full ie 2:8 outer energy level full/has octane structure/inert gas structure.
b) (i) W and Y
(ii) YW

16

17. Oxide Highest oxidation Number $\quad \mathrm{P}_{2} \mathrm{O}_{2}$

$$
\mathrm{C}_{2} \mathrm{O}_{7}
$$

18. Sodium chloride will remove Pb from the insoluble pbC 12 . This affects the value of the cell voltage.
19. a) The energy change that takes place when one mole of the compound is formed from its constituents elements in their state
b) $3 \mathrm{x}-286=2 \mathrm{x}-394-(277)$
$858+788+277=11369 \mathrm{kjmol}$
20. 



For electric or magnetic field
For showing how $\alpha$ and $\beta$ are attracted
For showing how $\alpha$ stopped by paper, $\beta$ by metal foil.
21. a) The colourless solution would turn brown, chloride displaces iodine from iodine solution

$$
\mathrm{C}_{2(\mathrm{~g})}+2 \mathrm{I}_{(\mathrm{aq})} \longrightarrow \mathrm{C}(\mathrm{aq})+\mathrm{I} 2_{(\mathrm{aq})}
$$

b) Covalent, because elements are non-metals
22. a) $\mathrm{Li}(\mathrm{s})+2 \mathrm{H} \square \mathrm{O}(\mathrm{s}) \longrightarrow 2 \mathrm{I}(\mathrm{aq})$
b) Potassium is very reactive; and so the reaction is likely to be very violent
23. Dissolve in water, filter to remove lead carbonate as a residue, evaporate filter to saturation and allow to cool. Crystallization to take place. Filter the crystals and dry. Evaporate to dryness.
24. a) H 2 S because it is oxidized by losing hydrogen/oxidation number s us increased from -2 to $0 . \mathrm{Cl} 2$ is reduced form 0 to -1 .
b) Theoretical yield of $\mathrm{S}=2.4 \times \underline{100}=3.2 \mathrm{~g}$

$$
75
$$

Mole of $\mathrm{H} 2 \mathrm{~S}(\mathrm{~g})=$ Moles of $\mathrm{S}(\mathrm{s})=\frac{3.2}{32}=0.1 \mathrm{~mol}$
25. Monomer $\mathrm{CH} 2=\mathrm{CH}$
R.M.M of monomer $=36+3+14=53$

No. of monomer $=\frac{5194}{53}$
26. (a) (i) Iron (II) nitrate solution - turns lead acetate paper black/give yellow solid with $\mathrm{SO}_{3}$ amphoteric/soluble both acids and bases.
29. $\mathrm{CO}(\mathrm{g})+\mathrm{PbO}_{(\mathrm{s})} \longrightarrow \mathrm{Pb}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$

## CHEMISTRY MARKING SCHEME K.C.S.E 1996 <br> PAPER 233/2


2.
a) (i)

(ii) MnO 2 is reduced In MNO 2 Mn has oxidation +4 where as on MnCl 2 it has oxidation number +2 (2mks)
(iii) To remove HCL fumes/ absorb as/spray
b)
(i) X - Oxygen (do not allow chlorine)

Y- Hydrogen
(ii) Water is a poor electrolyte when HCL gas dissolves in form hydrochloric acid which is an electrolyte.
(2mks)
(iii)

(i) X-Oxygen (do not allow chlorine)
(1mk)
b)
3.
a)

According to the equations the gases are produced in the ratio
(ii) Water is a poor electrolyte when HCL gas dissolves in form hydrochloric acid which is an electrolyte.
(iii) $4 \mathrm{OH}-(\mathrm{aq}) \longrightarrow \mathrm{O} 2(\mathrm{~g})+2 \mathrm{H} 2 \mathrm{O}(\mathrm{l})+4 \mathrm{e}$ OR

O2: $\mathrm{H} 2=1: 2$
b)
(i)

(ii) I. It is uneconomical/ expensive, because a lot of energy is required to produce this high temperature.
II. Addition of cryolite
(iii) The melting point is below 8000 C .
C) Quantity of electricity $=40,000 \times 60 \times 60$ coulombs. $3 \times 96,500$ coulombs of produce 27 g of A1 40,000x $60 \times 60$ x27 3x 96,500x 1,000
$=13.4 \mathrm{~kg}$.
4 a) $\mathrm{C}=6, \mathrm{H}=1, \mathrm{Na}=11, \mathrm{Ne}=20$.
b) $\mathrm{Ca}+2,8,8$ p3-2, 8, 8
c) $-259+273=14 \mathrm{k}$.
d) Red phosphorus this is because it has a higher melting point.
e) The one of atomic number 24 because it is closer to the R.A.M (24.3) that means it contributes to R.A.M more than the other two (2mks)
f) $\mathrm{Al4C} 3$
(1mk)
g) The melting point of a magnesium is higher than of sodium because its effective nuclear chare is higher/ it contributes more electrons to the metallic bonding as compared to Na which contributes/magnesium has 2 outer electron $(+2)$ where as sodium has only one $(+1)$ which can be delocalized.
a) i) $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$. Its M.P is higher than $10^{\circ} \mathrm{C}$
ii) $\quad \mathrm{C}_{5} \mathrm{H}_{12}$ and $\mathrm{C}_{6} \mathrm{H}_{14}$
$\mathrm{C}_{6} \mathrm{H}_{14}$ has a higher M.P therefore stronger van der waal force / intermolecular forces.
iii) $\quad \mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$ is more soluble in water than $\mathrm{C}_{5} \mathrm{H}_{12}$ because it forms hydrogen ${ }^{`}$ bonds with water molecules OR because it is polar due to the presence of $\mathrm{OH} / \mathrm{OH}$ mixes with water (Hydrogen bond if formed)
b) i) $\mathrm{C}_{4} \mathrm{H}_{8}$
ii) $\mathrm{C}_{4} \mathrm{H}_{8}+6 \mathrm{O}_{2} \longrightarrow 4 \mathrm{Co}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
c) i)

ii) Concentrated sulphuric acid $/ \mathrm{Al}_{2} \mathrm{O}_{3} /$ Concentrated phosphoric acid. Heat ( $160-180^{\circ} \mathrm{C}$ )
d) i) Saponification / Hydrolysis.
ii) Esters / fats
$\begin{array}{lll}\text { i) a) } & \text { Hygroscopic / Hygroscopy } \\ \text { ii) }\end{array}$
ii) Deliquescent / Deliquescence
iii) Efflorescent / efflorescence's
b) i) $\mathrm{Zn}(\mathrm{OH})^{2+}{ }_{4}$
ii) $\quad \mathrm{Cu}(\mathrm{OH}) 4^{2-}$
c) i) $\quad \mathrm{Fe} \quad \mathrm{O} \quad \mathrm{S} \quad \mathrm{H} 2 \mathrm{O}$

| 20.2 | 23.0 | 11.5 | 45.3 |
| :--- | :--- | :--- | :--- |


| 56 | 16 | 32 | 18 |
| :--- | :--- | :--- | :--- |

$\begin{array}{llll}0.36 & 1.44 & 0.36 & 2.52\end{array}$
$\begin{array}{llll}1 & 4 & 1 & 6\end{array}$
Empirical formula $\mathrm{FeSO}_{4} 7 \mathrm{H}_{2} \mathrm{O}$
Empirical mass $=(56+3+64+7(18))=278$
Formula $\mathrm{FeSO}_{4} 7 \mathrm{H}_{2} \mathrm{O}$
ii) $\quad 6.95 \mathrm{~g}=6.95=0.025$ moles
0.05 moles in $50 \mathrm{~cm} 3=0.025 \times 1000=0.1$

250
Concentration is $0.1 \mathrm{Mol}^{-1} \underline{6.95 \times 1000}$
$278 \times 250$
7. a) i) I) $18.8^{\circ} \mathrm{C}$ (avoid $17.5^{\circ} \mathrm{C}$ )
II) Solubility at 100 oC is $153-154$ in $100 \mathrm{~cm}^{3}$

Maximum mass in 15 litres $=154 \times 15 \mathrm{~g}$.
ii) Solubility at $23^{\circ} \mathrm{C}$ is 98 g in $1,000 \mathrm{~cm}^{3}$

Moles of SO2 $=\frac{98}{64}=1.53$
Moles of $\mathrm{NaOH}=2 \times 1.53=3.06$
Volume of $2 \mathrm{M} \mathrm{NaOH} \underline{3.06 \times 1000}=1,530 \mathrm{~cm}^{3}$
2
b)
i) I)
$\begin{array}{ll}\text { I) } & 4 \mathrm{FeS}_{2(\mathrm{~s})}+\mathrm{HO}=(\mathrm{g}) \longrightarrow \\ \text { II) } & \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{FeO}_{3(\mathrm{~s})}+ \\ & \end{array}$
III) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7(\mathrm{I})}+\mathrm{H}_{2} \mathrm{O}_{(10} \longrightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{l})}$ or (aq)
ii) I) Excess to shift equilibrium position to the right increases yield of $\mathrm{SO}_{4}$ Or produces more $\mathrm{SO}_{3}$ / complete oxidation of $\mathrm{SO}_{2}$
II) Vanadium (V) oxide / platinum or $\mathrm{V}_{2} \mathrm{O}_{5}$ / Vanadium pentoxide.

## CHEMISTRY PAPER 233/1 K.C.S.E 1997 <br> MARKING SCHEME

1.     - Iron wool turns or rusts due to formation of hydrated iron (III) oxide

- Level of water inside the tube rises to occupy the space left by oxygen
- Level of water in the beaker will fall

2.     - Kerosene floats on water therefore it continues to burn

- Carbon dioxide blanket covers the flame OR cuts off the supply of oxygen

3. 

| Name of polymer | Name of monomer | One use of the polymer |
| :--- | :--- | :--- |
| Polystyrene | Styrene (Phenylethene) | Insulation, plastic pipes, Biros, Artifi <br> rubber, care tyres manufacture of pla |
| Polymhyl chloride <br> Polychloethane <br> polychoeroethane | Vinyl chloride <br> (chloroethane) | Insulation of electric cables, plastics, p <br> cups, pipes, making plastic tiles, plasti <br> shoes, water tanks |

4. $\quad-\quad \mathrm{K}^{+}, / \mathrm{Na}^{+} /$(Lit) and $\mathrm{CO}_{3}{ }^{2-}$
5.     - B

Give a reason

- B does not form scum / A forms scum
- $\quad B$ is soapless detergent

6. (a) - White solid/ white ring/ white substance
(b) - Nearer to HCI than to $\mathrm{NH}_{3}$

NB. Not to touch the cotton wool
7. (a) - Time taken for a given mass of radioactive isotope to reduce to Half
(b) $\quad$ No. of $t \frac{1}{2}=\frac{100}{25}=4$
$\underline{5}=(1 / 2)^{4}=\mathrm{M}=80 \mathrm{~g}$
M
8. (a) $\mathrm{C}_{2} \mathrm{H}_{3}=27$
$27 \mathrm{n}=54$
$\mathrm{n}=2$
$\mathrm{MF}=\left(\mathrm{C}_{2} \mathrm{H}_{3}\right)_{2}=\mathrm{C}_{4} \mathrm{H}_{6}$
$\mathrm{H} \quad \mathrm{H}$

I

| $\mathrm{H}-\mathrm{C}-$ | $=$ |
| :---: | :---: |
| I | $\mathrm{C}-\mathrm{C}-\mathrm{H}$ |
| H | I |
| H |  |

(c) Alkyne/ Alkene

Depending on the structure
9. (a) - Barium Sulphate $\left(\mathrm{BaSO}_{3}\right)$
(b) $\quad-\quad \mathrm{BaSO}_{3(\mathrm{~s})}+2 \mathrm{HCI}(\mathrm{aq}) \rightarrow \mathrm{BaCl}_{2(\mathrm{aq})}+\mathrm{SO}_{2(\mathrm{aq})}$
(c) - Changes from orange to green
10. (a) $\quad-\quad \mathrm{Pb}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{PbSO}_{4(\mathrm{~s})}$
(b) $\quad \mathrm{RFM}$ of $\mathrm{PbSO}_{4}=207+32(16 \times 4)=303$
0.63 g pf Pb are in $\underline{303} \times 0.63$

207
$=\quad 0.92 \mathrm{~g}$
11. - Aluminum chloride is covalent while magnesium chloride is ionic
12. - Tetrachlomethane/ carbon tetrachloride


Cl
13. (a) $\Delta \mathrm{H}_{1}-$ Bond breaking/ activation Energy
$\Delta \mathrm{H}_{3}$ - Energy evolved during reaction
(b) $\quad-\quad \Delta \mathrm{H}_{3}=\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}$
14. (a) - Yellow solid formed/ yellow substance/ sulphur deposited
(b) $\quad-\quad 2 \mathrm{~S}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \quad 2 \mathrm{HCl}(\mathrm{g})+\mathrm{S}(\mathrm{s})$
(c) - In a fume cupboard/ in open air

- Both $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ and $\mathrm{Cl}_{2}(\mathrm{~g})$ are poisonous gases (They have irritating/

15. 



| $\frac{1 \times 400}{500}$ | $=\frac{0.5 \times 100}{\mathrm{~T}_{2}}$ |
| :--- | :--- |
| $\mathrm{~T}_{2}$ | $=\frac{0.5 \times 100 \times 500}{400}$ |
| $\mathrm{~T}_{2}$ | $=62.5 \mathrm{~K}$ |

17.     - $\quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ - It accepts a proton $(\mathrm{H}+)$ forward $\mathrm{r} x \mathrm{n}$

- or $\mathrm{HO}_{2}$ - it accepts a proton $(\mathrm{H}+$ ) Backward rxn

18. (a) - $\mathrm{Fe}^{3+}$
(b) - Oxidizing/ oxidation property
(c) - $\quad 2 \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ or $(\mathrm{l})$
19. (a)- $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
(b) Moles $=$ Volume x Morality 1000
Moles of $\mathrm{CO}^{2+} \quad=\quad \frac{90 \times 0.01}{1000}$
$=\quad 0.009$ moles
(c) - It forms scum initially then produces lather

- All the $\mathrm{Ca}^{2+}$ had not been precipitated.
- Water was still hhard

20. $\Delta \mathrm{H}=500 \times 9 \times 4.2$
$\Delta \mathrm{H}=18900 \mathrm{~J}$
18900J produced by $\frac{0.6 \times 38000}{18900}$

$$
=12.06
$$

21.     - (a) To generate stream which pushes out air
(b) The air would oxidize zinc oxide no gas would be obtained
(c) It is less than air
22. (a) - Thermometer should not be dipped in the mixture thermometer be at outlet point of condenser

- $\quad$ The direction of water flow is wrong/ condenser wrongly fixed
- Named flask used/ No water bath is used
(b) - Boiling point/ Freezing point
- Density / refractive index

23. a) - period $3 /$ Third period

- $\quad \mathrm{Y}^{3-} / \mathrm{p}^{3}$
- Ionic radius is large - Atomic radius smaller
- Incoming electron repelled by electron in shell / energy level.

24. 

a) Cathode - Hydrogen
Anode - Oxygen
b) - It increases
c) - There would be an explosion potassium is very reactive. It would react with the solvent.
25. TQRL / LRQT AND LRQT
26. a) - $\mathrm{pbO}, \mathrm{ZnO}, \mathrm{pbO}_{2}, \mathrm{SnO}, \mathrm{Sno}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}$
b) $\mathrm{pb}\left(\mathrm{OH} 0^{2-}, \mathrm{Zn}(\mathrm{OH})^{2-} 4, \mathrm{Zn}(\mathrm{OH})^{2}-4, \mathrm{Na}_{2} \mathrm{pbO}_{2}, \mathrm{NaZnO}_{2}\right.$, $\mathrm{NaAlO}_{2}, \mathrm{NaSnO}_{2}$
27.

28. - No. of moles of hydrogen $\mathrm{H}_{2} \quad=\quad{ }^{10} / 2 \quad=5$ Moles

No. of moles of Nitrogen dioxide $\mathrm{NO}_{2}=46$
Relative molecular mass of $\mathrm{NO}_{2}=46$
1 Mole of $\mathrm{No}_{2} \quad=5 \times 46$
5 Moles $\quad=30 \mathrm{~g}$

## CHEMISTRY PAPER 233/2 K.C.S.E 1997 MARKING SCHEME.

1. i) $\quad \mathrm{C} / \mathrm{C}_{2}$ Hydrogen is used as the reference electrode/ $\mathrm{E}^{\theta}$ value is 0.000 / standard electrode potential.
ii) $\quad-2.90$
iii)

iv) $2.38+0.34=2.72$

OR
$0.34-(-2.38)=2.72$
b) i)
$\mathrm{CU}_{(\mathrm{s})} \longrightarrow \mathrm{CU}^{2+}(\mathrm{aq})+2 \mathrm{e}$
OR
$\mathrm{CU}(\mathrm{S})+\mathrm{e} \longrightarrow \mathrm{CU}^{2+}{ }_{(\mathrm{aq})}$
ii) $0.2 \times 5 \times 60 \times 601 / 2 \quad 0.2 \times 5 \times 60 \times 60 \times 63.5$
$=3600$ coulombs.
63.5 g Cu requires 2 x 96500
$2 \times 96500$
3600 C produce $\frac{63.5 \times 3600}{2 \times 96500}=1.18 \mathrm{gm}$
2.
a) i) Buta-1-ol
ii) Propanoic acid
iii) Ethylethanoate.
b) i) $\mathrm{CnH} 2 \mathrm{n} \quad \mathrm{n}=$ No. of carbon atoms
ii) $\quad 70(\operatorname{not} 70 \mathrm{~g}$ if $\mathrm{g}=1 / 2 \mathrm{mk})$
iii) $\quad \mathrm{C}_{5} \mathrm{H}_{10} ; \mathrm{Ch}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH} \quad \mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}-\mathrm{Ch}_{3}$
c) i) Step I...............Hydrogen

Step II .............. Hydrogen chloride gas. / $\mathrm{HCl}_{(\mathrm{g})}$
Step III .............. $\mathrm{NaOH} /$ soda lime / sodium hydroxide
ii) $\quad 2 \mathrm{CH}_{(\mathrm{g})}+5 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 4 \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
iii) Environmental pollutant

It is not biodegradable / decomposed by bacteria.
3. i) G, H, L ( $1 / 2 \mathrm{Mk}$ if 2$)$

Reason $=$ Have a $1,2,2$ e'd respectively in outer orbit $/$ their
Chlorides have a high M.P easily looses e,s / outer orbital have less than 4 e's.
ii) $\quad \mathrm{HK}$ or Mgs (not KH or smg)
iii) J has strong covalent bonds / has a giant covalent / atomic structure / weak van der waals between molecules.
iv) $\quad+4 / 4-$
v) I - M.p of fluoride of G is higher because fluorine is more reactive than chlorine / forms stronger ionic bonds $G$ than chlorine/Flourone is more electronegative
II - reactivity of $L$ is higher. Reactivity within metallic group increases down the group and $L$ is below $H$. L looses e's easily // L is more electropositive.
4. a) (i) - To lower M.P of NaCl from $800-600^{\circ} \mathrm{C}$ hence reducing the cost of production of Na .
(ii) - Steel would react chlorine while graphite will not.
(ii) - M.P lower than that of the electrolyte

- Less dense than that of the eleactrolyte
(iv) - To prevent the chlorine and sodium from mixing / coming into conduct/ prevent products from mixing.
(v) I Cathode $\mathrm{Na}+$ (i) $+\mathrm{e}-\longrightarrow \mathrm{Na}$ (1)

II Anode 2Cl- (1) $\longrightarrow \mathrm{Cl}_{2(\mathrm{~g})}+2 \mathrm{e}-$
(i) Manufacture of $\mathrm{Na} 2 \mathrm{O} 2, \mathrm{NaCN} /$ alloy of $\mathrm{Na}+\mathrm{Pb}$ to make T.E.L / Liquid $\mathrm{Na}-$ coolant in nuclear reactors / Na vapour used in extraction of titanium.
(b) To prevent from reacting with air and water.

(b) (i) $5.3 \times 103$ moldm3 (units not necessary/do not penalise)

Change in conc. $=(9.6-4) \times 103=5.6 \times 103$
Change in time $=3.7-0=3.7 \mathrm{~min}$
Rate of reaction $5.6=1.51 \times 103$
3.7
(C) At high concentration the rate of reaction is high because the more particles in solution collide at high frequency.
(d) At lower temps; the particles have les K.e / frequency of collision is reduced/ few particles/ less activation energy.
6. (a) (i) Anhydrous /fused $\mathrm{CaCl} / \mathrm{CaO} /$ quick lime
(ii) To remove $\mathrm{CO}_{2} \longrightarrow 2 \mathrm{Fe} \mathrm{O}_{3}$ (s)
(iii) 4 Fe (s) +3 O 2 (g)

$$
3 \mathrm{Fe}(\mathrm{~s})+2 \mathrm{O}_{(\mathrm{g})} \longrightarrow \mathrm{Fe} 3 \mathrm{O} 4_{(\mathrm{s})}
$$

(iii) Argon // Helium// Krypton // Neon
(iv) Provide low temperature so that semen does not decompose// destroyed (low temp. tied with storage// decompose/destroyed.
b) (i) Conc. Sulphuric acid.
(ii) $\quad \mathrm{NaNO}_{3(\mathrm{~s})}+\mathrm{H} 2 \mathrm{SO} 4(\mathrm{l}) \longrightarrow \mathrm{NaHSO}_{4}(\mathrm{~s})+\mathrm{HNO}_{3(\mathrm{~g})} / /$
$\mathrm{NaNO}_{3(\mathrm{~s})}+\mathrm{H} 2 \mathrm{SO} 4(\mathrm{l}) \longrightarrow \mathrm{Na} 2 \mathrm{SO}_{4}(\mathrm{~s})+2 \mathrm{HNO}_{3}$
(iii) I To avoid decomposition of nitric acid by sunlight/light

II Copper react with $50 \%$ Nitric acid to form colourless $\mathrm{NO}_{2}$ then NO react with $\mathrm{O}_{2}$ to form brown fumes of $\mathrm{NO}_{2}$.
a) 1 mole $\mathrm{NHa} 4 \mathrm{NO}_{3}$ is formed from 1 M of $\mathrm{NH}_{3}$ 80 Kg of $\mathrm{Nh}^{2} \mathrm{NO}_{3}$ is formed from 17 Kg NH 3
4800 Kg of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ requires 17 x 4800 kg
80

$$
=1020 \mathrm{Kg} \text { (penalise } 1 / 2 \mathrm{mk} \text { if units are missing or wrong. }
$$

7. a) (i) To remove excess / unreacted HCL gas.
(ii) S

$$
\begin{aligned}
& 2 \mathrm{HCl}(\mathrm{~g})+\mathrm{Zn}(\mathrm{~s}) \\
& \mathrm{PbO}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g})
\end{aligned} \longrightarrow \mathrm{ZnCl}_{2}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g}) \mathrm{g}^{2}(\mathrm{~Pb}(\mathrm{~s})+\quad \mathrm{H} 2 \mathrm{O}(\mathrm{~g})
$$

(i) Mass will be lower at the end of the experiment because the combined $\mathrm{O}_{2}$ in PbO is removed/reduced.
b) (i) $\quad$ I To produce HCl gas $/ \mathrm{HCl}_{(\mathrm{g})}$

II To oxidize $\mathrm{HCl}_{(\mathrm{g})}$ to chlorine gas/produce chlorine gas.
(ii) Sodium hypochlorite/ NaOCl / Sodium chlorate
(iii) Kill germs /disinfectant/antiseptic
c) $\mathrm{MgCl}_{2}$ requires 2 mol of Ag . NO 3

Moles of $\mathrm{MgCl}_{2} \quad=\frac{1.9}{95}=0.02$ 95
Moles of $\mathrm{AgNO} 3=\frac{1.9}{95} \times 2=0.04$
R.F.M of $\mathrm{AgNO} 3=170$

Mass of AgNO3 $=\frac{1.9 \times 2 \times 170}{95}=0.04 \times 170$
$=\quad 6.8 \mathrm{gm}$

## CHEMISTRY PAPER 233/1 K.C.S.E 1998 <br> MARKING SCHEME

1. (a) $-234 \mathrm{U} \rightarrow 230 \mathrm{Th}+4 \mathrm{He}$
(b) - Gamma rays will penetrate through the walls of the container and causes damage
2.     - Add water to the solid mixture A dissolves while B does Not

- $\quad$ Filter the mixture
- Evaporate the filtrate to dryness

3. Advantage

- Prevents knocking engines
- Prevent premature ignition
- Increase the Octane rating (Number)


## Disadvantage

Poisonous lead or lead compounds are released into the environment/ pollutes the atmospheres
4.
(a) $\left\lvert\, \begin{array}{ll}\mathrm{Al}(\mathrm{s}) \\ \mathrm{EMF} & =\mathrm{E}^{\theta_{\mathrm{R}}} .\end{array}\right.$
$\mathrm{Al}^{3+}(\mathrm{aq})$
$\mathrm{E}^{\theta} \mathrm{O}$

| $\mathrm{Fe}^{2+}(\mathrm{aq})$ | $\mathrm{Fe}(\mathrm{s})$ |
| :--- | :--- |

EMF $=E^{\theta}{ }_{\mathrm{R}} . \mathrm{E}^{\theta} \mathrm{O}$
$=(-0.44)-(-1.66)=1.22 \mathrm{~V}$
(b) - It is always on the left cell rep

- Correspond on iron/ element lower in E.C.S of the two
- Has less negative

5. (a) -D
(b) -E
6. ALT 1
$\mathrm{CxHy}+\mathrm{O}_{2} \mathrm{xCO}_{2}+\mathrm{y} / 2 \mathrm{H}_{3} \mathrm{O}$
$\mathrm{XCO}_{2} \quad \mathrm{y} / 2 \mathrm{H}_{2} \mathrm{O}$
3:52 1:44
$\mathrm{r}: \frac{3.52}{44}=0.08 \quad \frac{1.44}{44}=0.08$
$=\underline{0.08}=1 \quad \underline{0.08}=1$

$$
\begin{aligned}
& \mathrm{X}=1 \mathrm{y} / 2=1 \\
& =\mathrm{E} . \mathrm{F}=\mathrm{CH} 2 \mathrm{y}=2 \\
& \text { E.F.M }=14 \\
& \quad \mathrm{~N}=\frac{56}{14}=4
\end{aligned}
$$

M.F. $\left(\mathrm{CH}_{2}\right)_{4}=\mathrm{C}_{4} \mathrm{H}_{8}$

Mass of $\mathrm{C}=12 \times 3.52=0.96$
44
Mass of $\mathrm{H}=2 \times 1.44=0.16 \mathrm{~g}$

Moles of $\mathrm{C}=0.96=0.08$

$$
12
$$

| Moles of H | $=0.16=0.16$ |  |  |
| :--- | :--- | :--- | :--- |
|  |  | 1 |  |
| Ratio | 0.08 | $:$ | 0.16 |
|  | 0.08 | $\vdots$ | 0.08 |
|  | 1 |  | 2 |
|  | EF | $\vdots$ | $\mathrm{CH}_{2}$ |
|  | N | $\vdots$ | 4 |
|  | $\mathrm{MF}=$ | $\left(\mathrm{CH}_{2}\right)_{4}=$ | $=\mathrm{C}_{4} \mathrm{H}_{8}$ |

7. (a) $\mathrm{SO}_{5}{ }^{2-}$
$\mathrm{NH}_{4}{ }^{+}$
(Acc. Sulphate ions, ammonia ions)
(b) From ammonia and sulphate based fertilizer
8. $\mathrm{FeCI}_{2}$ oxidation No. of Fe increase from +2 to +3

Or oxidation No. of $\mathrm{Cl}_{2}$ decreases from 0 to -1
4. (a) - Rxn where the rates of forward and backward rxns are the same
(b) - The mixture becomes more yellow reasons: The equilibrium Position Shifts/ moves to the right since more OH - ions have been added
5. 16 N

15P
6. (a) In Diamond all the C- atoms are joined together by covalent in a three dimensions (3-D) structure/ Tetrahedral structure thus very hard
(a) The C-atoms in graphite are bonded in layers/ hexagonal strata's, those thus slide over one another easily.
7. Strong acid - one which is fully dissociated when in water e.g $\mathrm{HCI}, \mathrm{Hi}, \mathrm{Hi}, \mathrm{HBr}$

Weak Acid: one which is partially dissociated when in water e.g. $\mathrm{CH}_{3} \mathrm{COOH}$
8. (a) Because concentration of $\mathrm{Cu}^{2+}$ is high at the beginning and decreases as the ions are discharged during electrolysis
(b) $\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}=\mathrm{Cu}(\mathrm{s})$
9. (a) Ethanol

(b) Propanoic

(c) - Ethylpropanoate
10. (a) (i) - F
(ii) - I
(b)
11. $\quad \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CI}_{2}(\mathrm{~g}) \quad \rightarrow \quad \mathrm{CH}_{3} \mathrm{CI}(\mathrm{g})+\mathrm{HCI}(\mathrm{g})$

| H |
| :---: |
| I |
| C |
| $\mathrm{H}-\mathrm{H}$ |
| H |
| H |
| $\frac{414+244}{\text { BBE } 658}$ |$=\frac{\mathrm{CI}-\mathrm{H} \rightarrow \mathrm{C}-\mathrm{CI}+\mathrm{H}-\mathrm{CI}}{\text { BFE } 757}$

$\Delta \mathrm{Hd}=\quad \mathrm{BBE}-\mathrm{BFE}=658-758=-99 \mathrm{KJ}$
ALT2
$4(414)+244=3(414)+326+431$
BBE $1900-1999=-99 K J$
12.


Solvent front
13. ALT 1

RMM of $\left(\mathrm{NH}_{2}\right) \mathrm{CO}=28-4+16=60$
$\mathrm{NH}_{3}{ }^{2}:\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$
$2 \times 17 \mathrm{~kg} \quad 60 \mathrm{~kg}$
$680 \mathrm{~kg}=\underline{60 \mathrm{~kg} \mathrm{x} 680} \quad=1200 \mathrm{~kg}$
$2 \times 17$

## ALT 2

Moles: $680000 \mathrm{~g}=40,000$ moles, $40,000=20,000$ moles 17

$$
\begin{aligned}
& \mathrm{Mg}= \mathrm{n} \times \text { R.F.M } \\
& 20,000 \times 60
\end{aligned}
$$

14. ALT 1

- Add dilute $\mathrm{HNO}_{3}$ to the carbonate
- Allow the rxn to go to completion
- Add excess dilute HCI to the mixture
- Filter

15. I. $\quad \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$

II $\quad 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
16. (a) Polystyrene or polyphenylethene
17. (a) $\mathrm{Zinc} / \mathrm{Zn}$
(b) $\quad \mathrm{Zn}\left(\mathrm{NH}_{3}\right) 4^{2+}$
18. $\mathrm{P}_{1}+\mathrm{P}_{2} \quad$ Vol is constant
$\frac{760}{273}=\frac{\mathrm{T}_{1}}{\frac{\mathrm{P}_{2}}{373}} \quad \mathrm{P}_{2}=\frac{760 \times 373}{273}=1038 \pm \mathrm{mmHg}$
19. Sting from a bee contains an acid which causes irritation $\mathrm{NaHCO}_{3}$ being alkaline neutralizes the acid
20.

> R- Melting/ fusion
> V- Boiling/ vaporization
> W - Condensation/ liquefaction
> U- Freezing/ solidification
21. IV, II, I,III
22. Butane

|  | H | H | H | H |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | I | I | I | I |  |
| H | C | - | C | - | C |
|  |  | C | - | H |  |
|  | I | I | I | I |  |
|  | H | H | H | H |  |

23. (i) $\mathrm{The}_{\mathrm{Ca}}{ }^{+}, \mathrm{Mg}^{2+}$ ions in water are exchanged with $\mathrm{Na}^{+}$ions in the permutit
(ii) By passing a solution of Conc. Sodium chloride through the Column
(iii) Provides $\mathrm{Ca}^{2+}$ required for teeth and bones formation

It coats lead pipes insides hence preventing lead poisoning
24. $x+4(-2)=-1$
$x-8=-1$
$\mathrm{x}=7$

## CHEMISTRY PAPER 233/ 2 K.C.S.E - 1998 <br> MARKING SCHEME

1. (a) - To a sample of the ore add dilute sulphuric acid or hydrochloric acid (I) and warm ( $1 / 2$ )

- $\quad$ Filter the mixture ( $1 / 2$ )
- To a portion of the filtrate, add sodium hydroxide or ammonium hydroxide drop wise until in excess ( $1 / 2$ )
- Formation of the dirty green precipitate ( $1 / 2$ ) OR
- To a portion of the filtrate, add sodium hydroxide or ammonia hydroxide drop wise until in excess (I) formation of brown precipitate ( $1 / 2$ ) shows presence of $\mathrm{Fe}^{3-}(1 / 2)$
(b) (i) Mass of oxygen $=13.30-12.66=0.64(\mathrm{~g})(1 / 2)$

Mass of iron $=12.66-10.98=1.68(\mathrm{~g})(1 / 2)$
$168=0.03 \quad 0.64=0.04$
52 16
Rate of moles Fe: $\mathrm{O}=3: 4(1 / 2)$
Molecules formula $=\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{I})$
(ii) $\quad \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~S})+4 \mathrm{CO}(\mathrm{s}) \rightarrow 3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{CO}_{2}(\mathrm{~g})$
(c) (i) Oxygen ( $1 / 2$ ), water ( $1 / 2$ )
(ii) Galvanizing, painting, electroplating e.t.c
(d) Seawater contains ions (I), which accelerate the rate of corrosion
2. (a) (i). Polymerization
(ii) Substitution (I) (accept chlorination)
(b) (i) distillation
(ii) - Sodium metal disappears/ dissolves/ clarts around (1/2)

- Bubbles of a colourless gas/ effervescence ( $1 / 2$ ) beaker become warm

Sodium metal reacts with ethanol to produce hydrogen gas (I)
The reaction is exothermic/ heat is evolved
(iii) Fuel/gasoline

- Solvent
- $\quad$ Starting material for manufacture of P.V.C, etheneglycol e.t.c
- $\quad$ Skin disinfect/ antiseptic
- In thermometer/ in making alcohol thermometers
(c) (i) Name: Propane

Structural formula
(ii) Bromine water is decolourised (I) because is unsaturated (I) or has a double bond
(iii) $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O},(\mathrm{g}) 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
3. (a) (i) Fractional distillation
(ii) Neutralization
(b) - Electrolysis of brine
(c) - High pressure brings the molecules closer/ increases the concentration of gas molecules (I)The pressure shifts the equilibrium to the right hence the yield of ammonia ( product) increases.
(d) $2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})\left(\mathrm{NH}_{4}\right) 2 \mathrm{SO}_{4}(\mathrm{aq})$
(e) Platinum or Rhodium

## Reagent

Water ( $1 / 2$ ), Oxygen ( $1 / 2$ )
(f) Ammonium nitrate $/ \mathrm{NH}_{4} \mathrm{NO}_{3}$
(g) Fertilizer
4. (a) Remove oxygen (I) which could react with the element to form an oxide (b) absorb excess chloride

- Absorb moisture from the atmosphere
(c) Sodium chloride has a high melting point (I) and the burner flame

Temperature is not able to vaporize sodium chloride
(d) Calcium oxide OR quick lime/ CaO
(e) $2 \mathrm{P}(\mathrm{s})+3 \mathrm{CI}_{2}(\mathrm{~g}) 2 \mathrm{PCI}_{3}(\mathrm{~g}) \quad \mathrm{P}_{4}+6 \mathrm{CI}_{2}(\mathrm{~g}) 4 \mathrm{PCI}_{3}(\mathrm{I})$
(f) - Heat the mixture

- Aluminium chloride sublimes
- Cool to obtain aluminium chloride
- Sodium chloride is left in the vessel

5. (a) (i) - Scale (I)

- Plotting all points correctly (I)
- Curve (shape)
(ii) $0.188-0.12=0.068 \mathrm{~mol}$ (I)

Therefore mass of hydrated copper (II) sulphate
$=0.68 \times 250=17 \mathrm{~g}$
(b) (i) Moles of $\mathrm{AgNO}_{3}=0.1 \times 24.1=2.41 \times 10^{-3}$

$$
1000
$$

(ii) $\quad$ Moles of $\mathrm{NaCI}=$ Moles of $\mathrm{AgNO}_{3}$
$=241 \times 10^{-3}$
(iii) Moles of NaCI in $250 \mathrm{~cm}^{3}=2.41 \times 10^{-3} \times 250$

25
$2.41 \times 10^{-2}$
(iv) R.F.M $\mathrm{NaCI}=23+35.5=58.5$

Mass of NaCI in $5 \mathrm{~cm}^{3}=2.41 \times 10-2 \times 58.5$
$=1.41 \mathrm{~g}$
(v) $\quad$ Mass of water $=5.35-1.41$ $=3.94 \mathrm{~g}$
(vi) 3.94 of water contains 1.41 g of NaCI

100 g of water $=1.41 \times 100$

$$
=35.7
$$

6. (a) (i) To get uniform mixing of the reagents hence uniform distribution of heat
(ii) $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \mathrm{OR}$
$\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
(iii) I. Complete neutralization takes place
II. $\quad \mathrm{Y}_{1}$ and $\mathrm{Y}_{2}$ reactions is tacking place producing heat
$\mathrm{Y}_{3}$ and $\mathrm{Y}_{4}$ reaction has come to an end, the reaction mixture is cooling/loss of heat to environment
(iv) I.
$\mathrm{T}=30.9-24.5=6.4^{0} \mathrm{C}$
$\mathrm{H}=200 \times 6.4$ (I) $\times 4.2=537$ joules
II. moles of $\mathrm{NaOH}=\frac{100 \times 1}{1000}=0.1$ moles
0.1 moles $=5376$ joules
therefore 1 mole $=\underline{5376}$
$0.1 \times 1000$
$=53.76 \mathrm{Kj} \mathrm{mol}^{-1}$
(v) Lower (I), ethanoic acid is partially ionized. Some energy is used to change the un ionized molecule into ions.
(b)


Mancumamernara
7. (a) (i) S and W
(ii) T,U,V
(b) (i) $\quad \mathrm{V}(\mathrm{I})$ it is the only element whose boiling point is below 298 K
(ii) V
(c) (i) $\quad \mathrm{T}\left(\mathrm{NO}_{3}\right)_{3}$
(ii) $\quad 2 \mathrm{~S}+\mathrm{U} \mathrm{S}_{2} \mathrm{U}$
(d) Ionic (I) T. Is a metal while U is a non- metal ( $1 / 2$ ). Therefore T loses electrons to $\mathrm{U} . \mathrm{T}$ is electropositive while U electronegative. $(1 / 2)$
(e) (i) Cathode

Hydrogen (I)
(ii) Anode

Oxygen (I)

## CHEMISTRY PAPER 233/1 K.C.S.E 1998 <br> MARKING SCHEME

1. (a) $-234 \mathrm{U} \rightarrow 230 \mathrm{Th}+4 \mathrm{He}$
(b) - Gamma rays will penetrate through the walls of the container and causes damage
2.     - Add water to the solid mixture A dissolves while B does Not

- $\quad$ Filter the mixture
- Evaporate the filtrate to dryness

4. Advantage

- $\quad$ Prevents knocking engines
- Prevent premature ignition
- Increase the Octane rating (Number)


## Disadvantage

Poisonous lead or lead compounds are released into the environment/ pollutes the atmospheres
4.

(a) | $\mathrm{Al}(\mathrm{s})$ | $\mathrm{Al}^{3}$ |
| ---: | :--- | :--- |
| EMF | $=\mathrm{E}^{\theta} \mathrm{R} . \mathrm{E}^{\theta} \mathrm{O}$ |

$\mathrm{Al}^{3+}(\mathrm{aq})$
$\mathrm{E}^{\theta} \mathrm{O}$

| $\mathrm{Fe}^{2+}(\mathrm{aq})$ | $\mathrm{Fe}(\mathrm{s})$ |
| :--- | :--- |

$=(-0.44)-(-1.66)=1.22 \mathrm{~V}$
(b) - It is always on the left cell rep

- Correspond on iron/ element lower in E.C.S of the two
- Has less negative

5. (a) -D
(b) -E
6. ALT 1
$\mathrm{CxHy}+\mathrm{O}_{2} \mathrm{xCO}_{2}+\mathrm{y} / 2 \mathrm{H}_{3} \mathrm{O}$
$\mathrm{XCO}_{2} \quad \mathrm{y} / 2 \mathrm{H}_{2} \mathrm{O}$
3:52 1:44
$\mathrm{r}: \frac{3.52}{45}=0.08 \quad \frac{1.44}{44}=0.08$
$=\underline{0.08}=1 \quad \underline{0.08}=1$

$$
\begin{aligned}
& \mathrm{X}=1 \mathrm{y} / 2=1 \\
& =\mathrm{E} . \mathrm{F}=C H_{2} \mathrm{y}=2 \\
& \text { E.F.M }=14 \\
& \quad \mathrm{~N}=\frac{56}{14}=4
\end{aligned}
$$

M.F. $\left(\mathrm{CH}_{2}\right)_{4}=\mathrm{C}_{4} \mathrm{H}_{8}$

Mass of $\mathrm{C}=12 \times 3.52=0.96$
44
Mass of $\mathrm{H}=2 \times 1.44=0.16 \mathrm{~g}$

Moles of $\mathrm{C}=0.96=0.08$

$$
12
$$

| Moles of H | $=0.16=0.16$ |  |  |
| :--- | :--- | :--- | :--- |
|  |  | 1 |  |
| Ratio | 0.08 | $:$ | 0.16 |
|  | 0.08 | $\vdots$ | 0.08 |
|  | 1 |  | 2 |
|  | EF | $\vdots$ | $\mathrm{CH}_{2}$ |
|  | N | $\vdots$ | 4 |
|  | $\mathrm{MF}=$ | $\left(\mathrm{CH}_{2}\right)_{4}=$ | $=\mathrm{C}_{4} \mathrm{H}_{8}$ |

7. (a) $\mathrm{SO}_{5}{ }^{2-}$
$\mathrm{NH}_{4}{ }^{+}$
(Acc. Sulphate ions, ammonia ions)
(b) From ammonia and sulphate based fertilizer
8. $\mathrm{FeCI}_{2}$ oxidation No. of Fe increase from +2 to +3

Or oxidation No. of $\mathrm{Cl}_{2}$ decreases from 0 to -1
26. (a) - Rxn where the rates of forward and backward rxns are the same
(b) - The mixture becomes more yellow reasons: The equilibrium Position Shifts/ moves to the right since more OH - ions have been added
27. 16 N

15P
28. (a) In Diamond all the C- atoms are joined together by covalent in a three dimensions (3-D) structure/ Tetrahedral structure thus very hard
(b) The C- atoms in graphite are bonded in layers/ hexagonal strata's, those thus slide over one another easily.
29. Strong acid - one which is fully dissociated when in water e.g $\mathrm{HCI}, \mathrm{Hi}, \mathrm{Hi}, \mathrm{HBr}$ Weak Acid: one which is partially dissociated when in water e.g. $\mathrm{CH}_{3} \mathrm{COOH}$
30. (a) Because concentration of $\mathrm{Cu}^{2+}$ is high at the beginning and decreases as the ions are discharged during electrolysis
(b) $\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}=\mathrm{Cu}(\mathrm{s})$
31. (a) Ethanol

|  | H | H |  | H |
| :---: | :---: | :---: | :---: | :---: |
|  | I | I |  | I |
| H | C | - C | - | OH |
|  | I | I |  |  |
|  | H | H |  |  |

(b) Propanoic

(c) - Ethylpropanoate
32. (a) (i) - F
(ii) - I
(b)
33. $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CI}_{2}(\mathrm{~g}) \quad \rightarrow \quad \mathrm{CH}_{3} \mathrm{CI}(\mathrm{g})+\mathrm{HCI}(\mathrm{g})$

| H |
| :---: |
| I |
| C |
| $\mathrm{H}-\mathrm{H}$ |
| H |
| H |
| $\frac{414+244}{\text { BBE } 658}$ |$=\frac{\mathrm{CI}-\mathrm{H} \rightarrow \mathrm{C}-\mathrm{CI}+\mathrm{H}-\mathrm{CI}}{\text { BFE } 757}$

$\Delta \mathrm{Hd}=\mathrm{BBE}-\mathrm{BFE}=658-758=-99 \mathrm{KJ}$
ALT2
$4(414)+244=3(414)+326+431$
BBE 1900-1999 = -99KJ
34.


Solvent front
35. ALT 1

RMM of $\left(\mathrm{NH}_{2}\right) \mathrm{CO}=28-4+16=60$
$\mathrm{NH}_{3}{ }^{2}:\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$
$2 \times 17 \mathrm{~kg} \quad 60 \mathrm{~kg}$
$680 \mathrm{~kg}=\underline{60 \mathrm{~kg} \mathrm{x} 680} \quad=1200 \mathrm{~kg}$
$2 \times 17$

## ALT 2

Moles: $680000 \mathrm{~g}=40,000$ moles, $40,000=20,000$ moles 17

$$
\begin{aligned}
& \mathrm{Mg} \quad=\quad \mathrm{n} \times \text { R.F.M } \\
& 20,000 \times 60
\end{aligned}
$$

36. ALT 1

- Add dilute $\mathrm{HNO}_{3}$ to the carbonate
- Allow the rxn to go to completion
- Add excess dilute HCI to the mixture
- Filter

37. I. $\quad \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$

II $\quad 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})$
38. (a) Polystyrene or polyphenylethene
39. (a) $\mathrm{Zinc} / \mathrm{Zn}$
(b) $\quad \mathrm{Zn}\left(\mathrm{NH}_{3}\right) 4^{2+}$
40. $P_{1}+P_{2} \quad$ Vol is constant
$\frac{760}{273}=\frac{\mathrm{T}_{1}}{\frac{\mathrm{P}_{2}}{373}} \quad \mathrm{P}_{2}=\frac{760 \times 373}{273}=1038 \pm \mathrm{mmHg}$
41. Sting from a bee contains an acid which causes irritation $\mathrm{NaHCO}_{3}$ being alkaline neutralizes the acid
42.

> R- Melting/ fusion
> V- Boiling/ vaporization
> W - Condensation/ liquefaction
> U- Freezing/ solidification
43. IV, II, I,III
44. Butane

|  | H | H | H | H |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| I | I | I | I |  |  |
| H | - | C | - | C | - |
| C | - | C | - | H |  |
|  | I | I | I | I |  |
|  | H | H | H | H |  |

45. (i) $\mathrm{The} \mathrm{Ca}^{+}, \mathrm{Mg}^{2+}$ ions in water are exchanged with $\mathrm{Na}^{+}$ions in the permutit
(ii) By passing a solution of Conc. Sodium chloride through the Column
(iii) Provides $\mathrm{Ca}^{2+}$ required for teeth and bones formation

It coats lead pipes insides hence preventing lead poisoning
46. $x+4(-2)=-1$
$x-8=-1$
$\mathrm{x}=7$

## CHEMISTRY PAPER 233/ 2 K.C.S.E - 1998 MARKING SCHEME

8. (a) - To a sample of the ore add dilute sulphuric acid or hydrochloric acid (I) and warm ( $1 / 2$ )

- $\quad$ Filter the mixture ( $1 / 2$ )
- To a portion of the filtrate, add sodium hydroxide or ammonium hydroxide drop wise until in excess ( $1 / 2$ )
- Formation of the dirty green precipitate ( $1 / 2$ ) OR
- To a portion of the filtrate, add sodium hydroxide or ammonia hydroxide drop wise until in excess (I) formation of brown precipitate ( $1 / 2$ ) shows presence of $\mathrm{Fe}^{3-}(1 / 2)$
(b) (i) Mass of oxygen $=13.30-12.66=0.64(\mathrm{~g})(1 / 2)$

Mass of iron $=12.66-10.98=1.68(\mathrm{~g})(1 / 2)$
$168=0.03 \quad 0.64=0.04$
52 16
Rate of moles Fe: $\mathrm{O}=3: 4(1 / 2)$
Molecules formula $=\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{I})$
(ii) $\quad \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~S})+4 \mathrm{CO}(\mathrm{s}) \rightarrow 3 \mathrm{Fe}(\mathrm{s})+4 \mathrm{CO}_{2}(\mathrm{~g})$
(c) (i) Oxygen ( $1 / 2$ ), water ( $1 / 2$ )
(ii) Galvanizing, painting, electroplating e.t.c
(d) Seawater contains ions (I), which accelerate the rate of corrosion
9. (a) (i). Polymerization
(ii) Substitution (I) (accept chlorination)
(b) (i) distillation
(ii) - Sodium metal disappears/ dissolves/ clarts around (1/2)

- Bubbles of a colourless gas/ effervescence ( $1 / 2$ ) beaker become warm

Sodium metal reacts with ethanol to produce hydrogen gas (I)
The reaction is exothermic/ heat is evolved
(iii) Fuel/gasoline

- Solvent
- $\quad$ Starting material for manufacture of P.V.C, etheneglycol e.t.c
- $\quad$ Skin disinfect/ antiseptic
- In thermometer/ in making alcohol thermometers
(c) (i) Name: Propane

Structural formula
(ii) Bromine water is decolourised (I) because is unsaturated (I) or has a double bond
(iii) $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O},(\mathrm{g}) 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
10. (a) (i) Fractional distillation
(ii) Neutralization
(b) - Electrolysis of brine
(c) - High pressure brings the molecules closer/ increases the concentration of gas molecules (I)The pressure shifts the equilibrium to the right hence the yield of ammonia ( product) increases.
(d) $2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})\left(\mathrm{NH}_{4}\right) 2 \mathrm{SO}_{4}(\mathrm{aq})$
(e) Platinum or Rhodium

## Reagent

Water ( $1 / 2$ ), Oxygen ( $1 / 2$ )
(f) Ammonium nitrate $/ \mathrm{NH}_{4} \mathrm{NO}_{3}$
(g) Fertilizer
11. (a) Remove oxygen (I) which could react with the element to form an oxide (b) absorb excess chloride

- Absorb moisture from the atmosphere
(c) Sodium chloride has a high melting point (I) and the burner flame

Temperature is not able to vaporize sodium chloride
(d) Calcium oxide OR quick lime/ CaO
(e) $2 \mathrm{P}(\mathrm{s})+3 \mathrm{CI}_{2}(\mathrm{~g}) 2 \mathrm{PCI}_{3}(\mathrm{~g}) \quad \mathrm{P}_{4}+6 \mathrm{CI}_{2}(\mathrm{~g}) 4 \mathrm{PCI}_{3}(\mathrm{I})$
(f) - Heat the mixture

- Aluminium chloride sublimes
- Cool to obtain aluminium chloride
- Sodium chloride is left in the vessel

12. (a) (i) - Scale (I)

- Plotting all points correctly (I)
- Curve (shape)
(ii) $0.188-0.12=0.068 \mathrm{~mol}$ (I)

Therefore mass of hydrated copper (II) sulphate
$=0.68 \times 250=17 \mathrm{~g}$
(b) (i) Moles of $\mathrm{AgNO}_{3}=0.1 \times 24.1=2.41 \times 10^{-3}$

$$
1000
$$

(ii) $\quad$ Moles of $\mathrm{NaCI}=$ Moles of $\mathrm{AgNO}_{3}$
$=241 \times 10^{-3}$
(iii) Moles of NaCI in $250 \mathrm{~cm}^{3}=2.41 \times 10^{-3} \times 250$

25
$2.41 \times 10^{-2}$
(iv) R.F.M $\mathrm{NaCI}=23+35.5=58.5$

Mass of NaCI in $5 \mathrm{~cm}^{3}=2.41 \times 10-2 \times 58.5$
$=1.41 \mathrm{~g}$
(v) $\quad$ Mass of water $=5.35-1.41$ $=3.94 \mathrm{~g}$
(vi) 3.94 of water contains 1.41 g of NaCI

100 g of water $=1.41 \times 100$

$$
=35.7
$$

13. (a) (i) To get uniform mixing of the reagents hence uniform distribution of heat
(ii) $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \mathrm{OR}$
$\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
(iii) I. Complete neutralization takes place
II. $\quad \mathrm{Y}_{1}$ and $\mathrm{Y}_{2}$ reactions is tacking place producing heat
$\mathrm{Y}_{3}$ and $\mathrm{Y}_{4}$ reaction has come to an end, the reaction mixture is cooling/loss of heat to environment
(iv) I.
$\mathrm{T}=30.9-24.5=6.4^{0} \mathrm{C}$
$\mathrm{H}=200 \times 6.4$ (I) $\times 4.2=537$ joules
II. moles of $\mathrm{NaOH}=\frac{100 \times 1}{1000}=0.1$ moles
0.2 moles $=5376$ joules
therefore 1 mole $=\underline{5376}$
$0.1 \times 1000$
$=53.76 \mathrm{Kj} \mathrm{mol}^{-1}$
(v) Lower (I), ethanoic acid is partially ionized. Some energy is used to change the un ionized molecule into ions.
(b)


Mancran mantrara
14. (a) (i) S and W
(ii) T,U,V
(b) (i) $\quad \mathrm{V}(\mathrm{I})$ it is the only element whose boiling point is below 298 K
(ii) V
(c) (i) $\quad \mathrm{T}\left(\mathrm{NO}_{3}\right)_{3}$
(ii) $\quad 2 \mathrm{~S}+\mathrm{U} \mathrm{S}_{2} \mathrm{U}$
(d) Ionic (I) T. Is a metal while U is a non- metal ( $1 / 2$ ). Therefore T loses electrons to $\mathrm{U} . \mathrm{T}$ is electropositive while U electronegative. $(1 / 2)$
(e) (i) Cathode

Hydrogen (I)
(ii) Anode

Oxygen (I)

