# CHEMISTRY MARKING SCHEME K.C.S.E. 1995 PAPER 233/1

| 1.  | a)                                                                                                                                                                                                                                | x-2, 8, 3, $\sqrt{(1mks)}$                                                                                                                                                                                          |                     |  |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|--|--|--|
|     | b)                                                                                                                                                                                                                                | $X_2Y_3 \sqrt{OR} Al_2 S_3 (1mk)$                                                                                                                                                                                   |                     |  |  |  |  |  |  |
| 2.  | The mixture would turn brown due to excess $Br_{2(g)}/H^+$ ions removes OH- ions from the mixture / equilibrium shifts to the left/observation not there BUT equilibrium shift to the left/ more Br formed for observation (2mks) |                                                                                                                                                                                                                     |                     |  |  |  |  |  |  |
| 3.  | 1 mole<br>Theref<br>CaCO<br>Theref                                                                                                                                                                                                | e CaCO3 2 moles of HCL<br>Fore $0.1(^{1}/_{2})$ mole CaO3 0.2 Mole ( $^{1}/_{2}$ )<br>$3 = 40 + 12 + 48 = 100g (^{1}/_{2})$<br>Fore 15g Ca CO3 = 15 = 0.15Moles<br>100g<br>Excess moles 0.15 - 0.05 ( $^{1}/_{2}$ ) |                     |  |  |  |  |  |  |
|     |                                                                                                                                                                                                                                   | Excess mass= $(0.05) \times 100$ ( $\frac{1}{2}$ ) = 5g                                                                                                                                                             | (3mks)              |  |  |  |  |  |  |
| 4   | a)                                                                                                                                                                                                                                | II because it requires little soap to lather                                                                                                                                                                        | (2mks)              |  |  |  |  |  |  |
| т.  | a)<br>b)                                                                                                                                                                                                                          | $\begin{array}{ll} \text{III} & \text{has temporary } (\frac{1}{2}) \text{ hardness which is removed by holling } (\frac{1}{2}) \end{array}$                                                                        | (1  mk)             |  |  |  |  |  |  |
| 5   | a)                                                                                                                                                                                                                                | sisal/ Cotton/ wool/ silk /iule/hemp/fur/hair                                                                                                                                                                       | (1mk)               |  |  |  |  |  |  |
| 0   | b)                                                                                                                                                                                                                                | They are stronger than natural fibres/OR are not easily affected by chemic                                                                                                                                          | als/lasts longer    |  |  |  |  |  |  |
|     | /durable/ can be produced easily in a large scale therefore cheaper (Reject Strong bonds)                                                                                                                                         |                                                                                                                                                                                                                     |                     |  |  |  |  |  |  |
|     | / dui do                                                                                                                                                                                                                          | (1mk)                                                                                                                                                                                                               | g bolids)           |  |  |  |  |  |  |
| 6   | a)                                                                                                                                                                                                                                | Pass the mixture through H2SO4 which absorbs D then collect by downw                                                                                                                                                | ard                 |  |  |  |  |  |  |
| 0.  | u)                                                                                                                                                                                                                                | delivery/pass the mixture though NaoH(aq) which absorb D and then colle                                                                                                                                             | ect by              |  |  |  |  |  |  |
|     |                                                                                                                                                                                                                                   | downward delivery (upward displacement)                                                                                                                                                                             | (2mks)              |  |  |  |  |  |  |
|     | b)                                                                                                                                                                                                                                | Ammonia $\binom{1}{2}$ – Gas- D reacts with the acid $\binom{1}{2}$ / basic/ is less denser /                                                                                                                       | lighter             |  |  |  |  |  |  |
|     | 0)                                                                                                                                                                                                                                | Think the determined $(72)^{-1}$ Guss D Teacts with the deta $(72)^{-1}$ subscriptions that are                                                                                                                     | (1 mk)              |  |  |  |  |  |  |
| 7   | П                                                                                                                                                                                                                                 | Because nure substances have sharp MP and BP as shown by the flat region                                                                                                                                            | ons of              |  |  |  |  |  |  |
| /   | 11                                                                                                                                                                                                                                | curve II (accent systematic)                                                                                                                                                                                        | (2mks)              |  |  |  |  |  |  |
| 8   | a)                                                                                                                                                                                                                                | $2H_{2}O_{4}$                                                                                                                                                                                                       | (2111K3)            |  |  |  |  |  |  |
| 0.  | u)<br>b)                                                                                                                                                                                                                          | Insoluble in water/slightly soluble in water                                                                                                                                                                        | (1  mk)             |  |  |  |  |  |  |
|     | 0)                                                                                                                                                                                                                                | To ensure that the air that occupied the apparatus initially is expected                                                                                                                                            | (1 mk)              |  |  |  |  |  |  |
|     |                                                                                                                                                                                                                                   | (reject impurities)                                                                                                                                                                                                 | (1  mk)             |  |  |  |  |  |  |
|     | 9                                                                                                                                                                                                                                 | When circuit is completed bulb lights $(\frac{1}{2})$ brown substance $(\frac{1}{2})$ formed                                                                                                                        | (THK)               |  |  |  |  |  |  |
|     | ).                                                                                                                                                                                                                                | when check is completed on on gata $(\frac{1}{2})$ brown substance $(\frac{1}{2})$ ronned                                                                                                                           | $\frac{g(c)}{free}$ |  |  |  |  |  |  |
|     |                                                                                                                                                                                                                                   | $\frac{1}{2}$ substance formed on earloue, because 1 obj2 acts as an electrolyte (                                                                                                                                  | es electrons to     |  |  |  |  |  |  |
|     |                                                                                                                                                                                                                                   | form $(\frac{1}{2})$ Bromine (Br)                                                                                                                                                                                   |                     |  |  |  |  |  |  |
|     |                                                                                                                                                                                                                                   | (Equations show ions current flow)                                                                                                                                                                                  | (3mks)              |  |  |  |  |  |  |
| 10  | a)                                                                                                                                                                                                                                | To remove ovide coating which could inhibit reaction                                                                                                                                                                | (1  mk)             |  |  |  |  |  |  |
| 10. | $a_j$<br>b)                                                                                                                                                                                                                       |                                                                                                                                                                                                                     |                     |  |  |  |  |  |  |
| 11  | 0)<br>a)                                                                                                                                                                                                                          | addition                                                                                                                                                                                                            | (1mk)               |  |  |  |  |  |  |
| 11. | a <i>j</i><br>b)                                                                                                                                                                                                                  | $CH_2CH = CH_2(\alpha) + Cl_2(\alpha) \longrightarrow CH_2CHCICH_2CI(\alpha)$                                                                                                                                       |                     |  |  |  |  |  |  |
|     | 0)                                                                                                                                                                                                                                | $CH_2(g) + CH_2(g) \longrightarrow CH_2(CH_2(CL_2(g)))$                                                                                                                                                             |                     |  |  |  |  |  |  |
|     |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                     | (1 mls)             |  |  |  |  |  |  |
|     |                                                                                                                                                                                                                                   | $C_3H_6+C_{12}$                                                                                                                                                                                                     | (1 IIIK)            |  |  |  |  |  |  |

12. Hydrogen forms compounds by losing one electron like group I elements or by gaining one electron like group VII element /Hydrogen has one electron in outermost shell. (2mks)

 $Al(s) + 6H+ (aq) 2A13+ (aq) + \square (g)$ A1(s)  $+6OH-(aq) \rightarrow A1(OH)(aq) + 2H(O)(g)$ 13. Wood ash is basic/ alkaline and would therefore react with aluminium a) Utensils/amphoteric/2A(s) + 6H $+ (aq) 2A13 + (aq)) + 3 H_2 (g)$ (2mks)It is strong  $\binom{1}{2}$  and not easily corroded  $\binom{1}{2}$  / Does not rust (1mk) b) 14. a) (C3H6O)n = 116 $(3 \times 12 + 6 + 16)n = 116 (1/2)$  Molecular formulae =  $2(C \Box H \Box O)$ 58n = 116 (1/2)=  $C_{3}H_{12}O_{2(1/2)}$ N = 116 = 2(1/2)(2mks)58 b)Percentage of Carbon = 12x6x + 1000(1/2) = 62.07(1/2) Range (62.05 - 62)

116

OR  $3 \times 12 \times 100 (1/2) = 62.07 (1/2) \text{ (mark consequently)}$ 58

15. Cool the mixture to a temperature below – 196°C to form a liquid then start warming, Nitrogen distils off a gas at – 196O (cool first) (2mks)

16.a)

| Alkaline | Formula          | Heat of combustion ( $\triangle$ Hc)kjmol <sup>-1</sup> |
|----------|------------------|---------------------------------------------------------|
| Methane  | CH <sub>4</sub>  | - 890                                                   |
| Ethane   | C <sub>2</sub> H | - 1560                                                  |
| Propane  | C3H8             | - 2220                                                  |
| Butane   | C4H10            | - $2870 - 2880(^{1}/_{2})$                              |
|          | (0               | · 1 · )                                                 |

(Correct answer only -ve sign) (award full mark if figure is not  $\pm$ ) 2220 - 1560 = 660 1560 - 890 = 670 2220 + 650 = 2870

(Accept any value 2870)Any calculation (1mk)

(1mk)

- b)  $\triangle$ Hc is an exothermic reaction.
- 17. a) I Molten sulphur
  - b) II Superheated water / water.
- 18. a)  $2HCl (aq) + Zncl \Box (aq) + H2 (g) (^{-1}/_{2}) \text{ states})$ 
  - b)  $2H_2(g) + O_2(g \longrightarrow 2H_2O(g) \text{ (Not L)} (^{-1}/_2 \text{ state})$
- 19. Hydrogen, because it is lighter/ less denser / diffuses faster (2mks)



#### **CHEMISTRY MARKING SCHEME** PAPER 233 / 2 K.C.S.E 1995



(2 mks)



(d) Acid rain may from due to presence of SO<sub>2</sub> (g) and CO<sub>2</sub> (g) dumping of the waste like the slag prevent vegetation growth large gullies left after the ore is excavated destroys the environment (Do not accept presence of heat)
 (1 mk)



| (iii) Zr                       | $h^{2+}(aq) + 4NH^3(aq) \rightarrow [Zn (NH_3)^4]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| (iv) Br                        | own coloured gas OR reddish brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1 mk)                         |
| (v) Ad                         | dition of anhydrous or white CuSo4 copper (II) sulphate which turns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s blue in presence of water or |
| col                            | palt chloride paper which turns pink (1 mk)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                              |
| (b)                            | (i) One of the salts in R is not soluble in water because a residue is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | formed on addition of          |
|                                | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (2 mks)                        |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |
|                                | (ii) $CO_3^{2-}$ because $CO_2$ (g) is produced on addition of acid<br>(iii) $Pb^{2-}(aq)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (2 mks)                        |
| (c)                            | Zinc nitrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (1 mk)                         |
| (-)                            | Lead carbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1mk)                          |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ()                             |
| 6. (a) (                       | i) Bitumen, it has highest B.P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (2 mks)                        |
| (                              | ii) Fractional distillation. During the distillation petrol would distil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | off at $175^{\circ}$ and       |
| Ì                              | diesel could distil at 350°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (2 mks)                        |
| (i                             | ii) Each component is mixture of hydrocarbons which have differen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t boiling points               |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |
| (iv                            | y) Methane CH4(g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                | Ethane C <sub>2</sub> H <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |
|                                | Propane C <sub>3</sub> H <sub>8</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |
|                                | Butane C <sub>4</sub> H <sub>10</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |
| (b) Bı                         | rning it in limited amount of air will produce carbon monoxide whi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ch is poisonous                |
|                                | (2mks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )                              |
| (c) Ma                         | anufacture of tar used in tarmac/ sealing of roofs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (1mk)                          |
| $\mathcal{T}(z)$               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |
| / (a)                          | (i) Liquid L is water<br>(ii) Disaly compary (II) evide changes to moddlich brown because it is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | to the second to               |
|                                | (II) Black copper (II) oxide changes to reduish brown because it is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1mlr)                         |
|                                | copper by animoma $(33) 2NIL_{\alpha}(\alpha) + 2CnO(\alpha) = 2CnO(\alpha) + N_{\alpha}(\alpha) + 1LO(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1  mk)                        |
|                                | (iii) $2N\Pi_3(g) + 5CuO(s) = 5Cu(s) + N_2(g) + \Pi_2O(1)$<br>(iv) $L = 2 \text{ moles NHe} \Rightarrow 1 \text{ mole N2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1 mk)                         |
|                                | $(10)1^{-2}$ moles $1013^{-2}$ mole $102^{-1}$<br>$320 \text{ cm}^3 \text{NH}_2 \Rightarrow 320 - 160 \text{ cm}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |
|                                | $\frac{3200}{2} = 1000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |
|                                | II Moles of $NH_2 = 320 = 0.133$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |
|                                | 24000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |
|                                | 2 moles of $NH_3 = 3$ moles CuO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |
|                                | Moles of CuO – 320 x $\frac{1}{2}$ x 3 $\frac{1}{5}$ = 0.02 moles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                                | $\frac{1}{1000} = \frac{1}{1000} = 1$ |                                |
|                                | Mass of CuO= $0.02 \times 79.5g = 1.59g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (3mks)                         |
| (v)                            | The excess ammonia from the reaction dissolves in the water in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e beaker to form               |
| <b>X</b> <sup>1</sup> <b>J</b> | ammonium hydroxide which is a weak alkali or base of pH about 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10. (2 mks)                    |
| (b)                            | The burning splint would be extinguished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(1 \text{ mk})^{\prime}$      |
| (c)                            | Because it is cheaper and ammonia is made from nitrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1mk)                          |
| (b)<br>(c)                     | The burning splint would be extinguished<br>Because it is cheaper and ammonia is made from nitrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1 mk)<br>(1mk)                |

# K.C.S.E 1996 CHEMISTRY MARKING SCHEME PAPER 233/1

1. Air is less dense than carbon dioxide and so it enters the polous pot faster than carbon dioxide out of it. This sets up a higher pressure; in the pot and the level rises as shown:

2. 
$$P_1V_1 = P_2V_2 \text{ OR } \frac{V_1}{I_2} = \frac{V_2}{I_2}$$
 (Charles' Law)

$$V_{2} = \underbrace{P_{1}V_{1}T_{1}}_{T_{1}P_{2}} \qquad V_{2} = \underbrace{250x315}_{300} \\ = \underbrace{\frac{750x250 x315}{300x 750}}_{300x 750} = 262.5$$

3. a) Moles of 
$$Zn = \frac{196}{65.4}$$
 0.03  
Holes of HCL =  $\frac{100 \times 0.2}{1000}$  = 0.02  
Nine was in excess

b) Moles of H<sub>2</sub> produced = 0.01Volume =  $22.4 \times 0.01 = 0.224$  litres or  $224 \text{ cm}^4$ 

4. a) increase in temperature would lower the yield of Nitrogen, this is because the reaction is exothermic and equilibrium shift to the left.



It has a lone pair of electrons which it uses to form a dative bond with H ions (1mk) a) G

b) E

5.

6.



- Sulphur dioxide, it reacts with limewater being an acid gas 8.
- 9. Add solid hydrogen carbonate; CH<sub>3</sub>COOH produces effervescence; while CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH does not (Accept any other carbonate that behaves
- 10 The ionic end lowers the surface tensions of water, facilitating mixing while the non-ionic end (non-polar end) mixes with grease, dislodging it from the fabric.
- 11. Number of neutrons =1 Number of electrons=1
- $2mg_{(s)} + O_{2(g)} \longrightarrow MgO_{(s)}$ 12  $3Mg_{(s)} + N_{2(g)} \rightarrow Mg_{3}N_{2(s)}$
- I, production of carbon dioxide or carbon is oxidized to its highest oxidation number/ 13. carbon dioxide cannot burn further or carbon dioxide cannot burn further or carbon monoxide can burn further.
- 14. Increase in pressure would shift the equilibrium to the left; since in pressure favors the reaction will produce less volume of gas.
- X, both energy levels are full i.e 2:8 outer energy level full/has octane 15. a) structure/inert gas structure.
  - W and Y (i)

16



17. Oxide Highest oxidation Number  $P_2 O_2$  $C_2O_7$ 

- Sodium chloride will remove Pb from the insoluble pbC12. This affects the value of the cell 18. voltage.
- 19. The energy change that takes place when one mole of the compound is formed from its a) constituents elements in their state
  - 3x-286 = 2x-394-(277)b)

858 + 788+ 277 = 11369kjmol



- 23. Dissolve in water, filter to remove lead carbonate as a residue, evaporate filter to saturation and allow to cool. Crystallization to take place. Filter the crystals and dry. Evaporate to dryness.
- 24. H2S because it is oxidized by losing hydrogen/oxidation number s us increased from -2 a) to 0. Cl2 is reduced form 0 to -1.

Theoretical yield of  $S = 2.4 \times 100 = 3.2g$ b) 75

Mole of H2S(g) = Moles of S(s) =  $\frac{3.2}{32}$  = 0.1mol

53

25. Monomer CH2 = CHCH R.M.M of monomer = 36+3+14=53No. of

f monomer 
$$= 5194$$

- 26. (i) Iron (II) nitrate solution – turns lead acetate paper black/give yellow solid with SO<sub>3</sub> (a) amphoteric/soluble both acids and bases.
- $CO(g) + PbO(s) \longrightarrow Pb(s) + CO_2(g)$ 29.



# CHEMISTRY MARKING SCHEME K.C.S.E 1996

2. a) (i)



|    |       | (ii)          | MnO2 is reduced<br>In MNO2 Mn has oxidation +4 where as on MnCl2 it has oxidat<br>(2mks)                            | ion number +2            |
|----|-------|---------------|---------------------------------------------------------------------------------------------------------------------|--------------------------|
|    | (iii) |               | To remove HCL fumes/ absorb as/spray                                                                                | (1 mk)                   |
|    | b)    | (i)           | X- Oxygen (do not allow chlorine)<br>Y- Hydrogen<br>Water is a near alastraluta when UCL and dissolves in form hydr | (1mk)<br>(1mk)           |
|    |       | (II)<br>whicł | is an electrolyte.                                                                                                  | ocmorie acid             |
|    |       |               | (2mk                                                                                                                | as)                      |
|    |       | (iii)         | $4OH-(aq) \longrightarrow O2(g) +2H2O(l) +4e$<br>OR                                                                 |                          |
| b) |       | (i)           | 4H+ (aq)+ 4e → H2 (g) s<br>X-Oxygen (do not allow chlorine)<br>Y- Hydrogen                                          | (1mk)<br>1mark)<br>(1mk) |
|    |       | (ii)          | Water is a poor electrolyte when HCL gas dissolves in form hyd                                                      | rochloric acid           |
|    |       | which         | n is an electrolyte.                                                                                                | (2mks)                   |
|    |       | (iii)         | $4OH-(aq) \longrightarrow O2 (g) + 2H2O (l) + 4e$<br>OR                                                             |                          |
|    |       | Acc<br>O2: H  | ording to the equations the gases are produced in the ratio $I2 = 1:2$                                              | (2mks)<br>(2mks)         |
| 3. | a)    | (i)           | Bauxite                                                                                                             | (1mk)                    |
|    |       | (ii)          | Iron (III) Oxide/ silicon (IV) / silicon dioxide/ silica                                                            | (1mk)                    |
|    | b)    | (i)           | Accde (1)                                                                                                           | 5                        |
|    |       |               |                                                                                                                     |                          |

b

- (ii) I. It is uneconomical/ expensive, because a lot of energy is required to produce this high temperature.
  - Addition of cryolite II.
- (iii) The melting point is below 8000C.
- Quantity of electricity =  $40,000 \times 60 \times 60$  coulombs. C)

3x96, 500 coulombs of produce 27g of Al

(1mk)

40,000x 60 x 60 x27

#### 3x 96,500x 1,000

- = 13.4kg.
- 4 C=6, H=1, Na= 11, Ne = 20. a)
  - Ca+ 2, 8, 8 b)
    - p3-2, 8, 8
  - -259 + 273 =14k. c)
  - Red phosphorus this is because it has a higher melting point. d)
  - The one of atomic number 24 because it is closer to the R.A.M (24.3) that means it e) (2mks)

contributes to R.A.M more than the other two

- f) Al4C3
- The melting point of a magnesium is higher than of sodium because its effective nuclear chare is **g**) higher/ it contributes more electrons to the metallic bonding as compared to Na which contributes/magnesium has 2 outer electron(+2) where as sodium has only one(+1) which can be delocalized. (2 mks)
- 5. i) C<sub>2</sub>H<sub>4</sub>O<sub>2</sub>. Its M.P is higher than 10°C a)
  - ii) C5H12 and C6H14 C<sub>6</sub>H<sub>14</sub> has a higher M.P therefore stronger van der waal force / intermolecular forces.
  - iii) C<sub>3</sub>H<sub>8</sub>O is more soluble in water than C5H<sub>12</sub> because it forms hydrogen ` bonds with water molecules OR because it is polar due to the presence of OH / OH mixes with water (Hydrogen bond if formed)
  - b) C<sub>4</sub>H<sub>8</sub> i)
  - ii)  $C_4H_8 + 6O_2 \rightarrow 4 Co_2 + 4 H_2O$
  - c) i)

6.

| Н      | Η   | Н   | Η     | Н    |   |
|--------|-----|-----|-------|------|---|
| 1      | I.  | I   | I I   | I    |   |
| H- C - | С — | С — | C — C | — OH |   |
| I      | I   | I   | I     | I    | Ι |
| Н      | Н   | Н   | Н     | Н    | Н |

Concentrated sulphuric acid / Al<sub>2</sub>O<sub>3</sub> / Concentrated phosphoric acid. ii) Heat  $(160 - 180^{\circ}C)$ 

| d) | i)   | Saponification / Hydrolysis.   | (1mk) |
|----|------|--------------------------------|-------|
|    | ii)  | Esters / fats                  | (1mk) |
| a) | i)   | Hygroscopic / Hygroscopy       | (1mk) |
|    | ii)  | Deliquescent / Deliquescence   | (1mk) |
|    | iii) | Efflorescent / efflorescence's | (1mk) |
| b) | i)   | $Zn(OH)^{2+4}$                 |       |

Cu (OH)42ii)

| c) | i)                                       | Fe      | 0                     | S               | H2O                |                                                           |  |  |
|----|------------------------------------------|---------|-----------------------|-----------------|--------------------|-----------------------------------------------------------|--|--|
|    |                                          |         | 20.2                  | 23.0            | 11.5               | 45.3                                                      |  |  |
|    |                                          |         | 56                    | 16              | 32                 | 18                                                        |  |  |
|    |                                          |         | 0.36                  | 1.44            | 0.36               | 2.52                                                      |  |  |
|    |                                          |         | 1                     | 4               | 1                  | 6                                                         |  |  |
|    |                                          | Empiri  | cal form              | nula Fe         | SO <sub>4</sub> 7H | <sub>2</sub> O                                            |  |  |
|    | Empirical mass = $(56+3+64+7(18)) = 278$ |         |                       |                 |                    |                                                           |  |  |
|    |                                          |         |                       | Form            | nula FeS           | SO4 7H2O                                                  |  |  |
|    |                                          | ii)     | 6.95g =               | =6.95 =         | 0.025 r            | noles                                                     |  |  |
|    |                                          |         | 0.05 m                | oles in         | 50cm3              | = 0.025  x  1000 = 0.1                                    |  |  |
|    |                                          |         |                       |                 |                    | 250                                                       |  |  |
|    |                                          |         | Concer                | ntration        | is 0.1 N           | Mol <sup>-1</sup> <u>6.95x1000</u>                        |  |  |
|    |                                          |         |                       |                 |                    | 278 x 250                                                 |  |  |
| 7. | a)                                       | i)      | I)                    | 18.8°C          | avoid (avoid       | 117.5°C)                                                  |  |  |
|    |                                          |         | II)                   | Solubi          | lity at 1          | 000 is $153 - 154$ in $100$ cm <sup>3</sup>               |  |  |
|    |                                          |         |                       | Maxin           | num ma             | ss in 15 litres = $154 \times 15g$ .                      |  |  |
|    |                                          | ii)     | Solubi                | lity at 2       | 3°C is 9           | 08g in 1,000cm <sup>3</sup>                               |  |  |
|    |                                          |         | Moles                 | of SO2          | = <u>98</u> =      | 1.53                                                      |  |  |
|    |                                          |         |                       |                 | 64                 |                                                           |  |  |
|    | Moles                                    | of NaO  | H = 2 x               | 1.53 =          | 3.06               |                                                           |  |  |
|    | Volum                                    | e of 2M | I NaOH                | [ <u>3.06 x</u> | 1000 =             | 1,530cm <sup>3</sup>                                      |  |  |
|    | •                                        | -       |                       | 2               |                    |                                                           |  |  |
| b) | i)                                       | I)      | $4 \text{FeS}_{2(2)}$ | $_{s)} + HO$    | =(g)               | $2 FeO_{3(s)} + 8SO_{2(g)}$                               |  |  |
|    |                                          | II)     | $SO_3(g)$             | $+ H_2S$        | O <sub>4</sub> —   | →H2S2O7(10)                                               |  |  |
|    |                                          | III)    | $H_2S_2O$             | $7(1) + H_2$    | $2O_{(10}$         | $\rightarrow$ 2H <sub>2</sub> SO <sub>4</sub> (1) or (aq) |  |  |
|    | ii)                                      | I)      | Excess                | to shift        | t equilib          | prium position to the right increases yield of SO4        |  |  |
|    |                                          |         | Or pro                | oduces r        | nore SC            | D <sub>3</sub> / complete oxidation of SO <sub>2</sub>    |  |  |
|    |                                          | II)     | Vanad                 | ium (V)         | ) oxide /          | / platinum or $V_2O_5$ / Vanadium pentoxide.              |  |  |

# CHEMISTRY PAPER 233/1 K.C.S.E 1997 MARKING SCHEME

- 1. Iron wool turns or rusts due to formation of hydrated iron (III) oxide
  - Level of water inside the tube rises to occupy the space left by oxygen
    - Level of water in the beaker will fall
- 2. Kerosene floats on water therefore it continues to burn
  - Carbon dioxide blanket covers the flame OR cuts off the supply of oxygen
- 3.

| Name of polymer   | Name of monomer        | One use of the polymer                     |
|-------------------|------------------------|--------------------------------------------|
| Polystyrene       | Styrene (Phenylethene) | Insulation, plastic pipes, Biros, Artific  |
|                   |                        | rubber, care tyres manufacture of plas     |
| Polymhyl chloride | Vinyl chloride         | Insulation of electric cables, plastics, p |
| Polychloethane    | (chloroethane)         | cups, pipes, making plastic tiles, plasti  |
| polychoeroethane  |                        | shoes, water tanks                         |

- 4.  $K^+$ , / Na<sup>+</sup> / (Lit) and CO<sub>3</sub><sup>2-</sup>
- 5. B
  - Give a reason
  - B does not form scum / A forms scum
  - B is soapless detergent
- 6. (a) White solid/ white ring/ white substance
  - (b) Nearer to HCI than to NH<sub>3</sub>
  - NB. Not to touch the cotton wool
- 7. (a) Time taken for a given mass of radioactive isotope to reduce to Half

(b) No. of t 
$$\frac{1}{2} = \frac{100}{25} = 4$$
  
 $\frac{5}{M} = (\frac{1}{2})^4 = M = 80g$ 

8. (a) 
$$C_{2}H_{3} = 27$$
  
 $27n = 54$   
 $n = 2$   
 $MF = (C_{2}H_{3})_{2} = C_{4}H_{6}$   
 $H = H$   
 $I = I$ 

|         | H-C- = -C - C - H                                                                                  |
|---------|----------------------------------------------------------------------------------------------------|
|         | I I                                                                                                |
|         | H H                                                                                                |
| (c)     | Alkyne/ Alkene                                                                                     |
|         | Depending on the structure                                                                         |
| 9. (a)  | - Barium Sulphate (BaSO <sub>3</sub> )                                                             |
| (b)     | - $BaSO_{3(s)} + 2HCI(aq) \rightarrow BaCI_{2(aq)} + SO_{2(aq)}$                                   |
| (c)     | - Changes from orange to green                                                                     |
| 10. (a) | - $Pb^+(aq) + SO_4^{2-}(aq) \rightarrow PbSO_{4(s)}$                                               |
| (b)     | RFM of $PbSO_4 = 207 + 32 (16 \times 4) = 303$                                                     |
|         | 0.63g pf Pb are in <u>303</u> x 0.63                                                               |
|         | 207                                                                                                |
|         | = 0.92g                                                                                            |
| 11.     | - Aluminum chloride is covalent while magnesium chloride is ionic                                  |
| 12.     | - Tetrachlomethane/ carbon tetrachloride                                                           |
|         | C1                                                                                                 |
|         | I                                                                                                  |
|         | Cl - C - Cl                                                                                        |
|         | Ι                                                                                                  |
|         | Cl                                                                                                 |
| 13. (a) | $\Delta H_1$ – Bond breaking/ activation Energy                                                    |
|         | $\Delta$ H <sub>3</sub> – Energy evolved during reaction                                           |
| (b)     | - $\Delta H_3 = \Delta H_1 + \Delta H_2$                                                           |
| 14. (a) | - Yellow solid formed/ yellow substance/ sulphur deposited                                         |
| (b)     | $- 2S(g) + Cl_2(g) \rightarrow 2HCl(g) + S(s)$                                                     |
| (c)     | - In a fume cupboard/ in open air                                                                  |
|         | - Both $H_2S(g)$ and $Cl_2(g)$ are poisonous gases (They have irritating/                          |
|         | pungent smell)                                                                                     |
|         |                                                                                                    |
| 15.     | Inverted funnel (1                                                                                 |
|         |                                                                                                    |
|         |                                                                                                    |
|         |                                                                                                    |
|         |                                                                                                    |
|         |                                                                                                    |
|         |                                                                                                    |
| 16      | $\underline{0.5 \times 100} = \underline{4000} \times 1$ T2 $= \underline{50 \times 500} = 62.5$ K |
|         | T <sub>2</sub> 500 400                                                                             |
|         |                                                                                                    |
|         | $\mathbf{P}_1 \mathbf{v}_1 = \mathbf{P}_2 \mathbf{v}_2$                                            |
|         | <b>I</b> <sub>1</sub> <b>I</b> <sub>2</sub>                                                        |

|                    |                      | $\frac{1 \times 400}{500} = \underbrace{\begin{array}{c} 0.5 \times 100}{T_2} \\ T_2 \end{array} = \underbrace{\begin{array}{c} 0.5 \times 100 \\ 0.5 \times 100 \times 500 \\ 400 \end{array}}_{400}$                                                                         |
|--------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                      | $T_2 = 62.5 \text{ K}$                                                                                                                                                                                                                                                         |
| 17.                | -                    | $H_2O(l) - It$ accepts a proton (H+) forward r x n<br>or $HO_2 - it$ accepts a proton (H+) Backward r x n                                                                                                                                                                      |
| 18. (a<br>(b<br>(c | n) -<br>o) -<br>c) - | Fe <sup>3+</sup><br>Oxidizing/ oxidation property<br>2Fe(OH) <sub>3</sub> (s) $\rightarrow$ Fe2O <sub>3</sub> (s) + 3H <sub>2</sub> O(g) or (l)                                                                                                                                |
| 19. (              | a)-<br>b)            | $Ca(OH)_{2}(aq) + Ca(HCO_{3})_{2}(aq) \rightarrow 2CaCO_{3}(s) + H_{2}O(l)$ $Moles = \frac{Volume \ x \ Morality}{1000}$                                                                                                                                                       |
|                    |                      | Moles of $CO^{2+}$ = $\frac{90 \times 0.01}{1000}$<br>= 0.009 moles                                                                                                                                                                                                            |
| (c)                | -<br>-<br>-          | It forms scum initially then produces lather<br>All the Ca <sup>2+</sup> had not been precipitated.<br>Water was still hhard                                                                                                                                                   |
| 20.                | ΔΗ<br>ΔΗ             | $= 500 \times 9 \times 4.2$<br>= 18900J<br>18900J produced by <u>0.6 x 38000</u><br>18900<br>= 12.06                                                                                                                                                                           |
| 21.                | -                    | <ul> <li>(a) To generate stream which pushes out air</li> <li>(b) The air would oxidize zinc oxide no gas would be obtained</li> <li>(c) It is less than air</li> </ul>                                                                                                        |
| 22.                | (a)<br>(b)           | <ul> <li>Thermometer should not be dipped in the mixture thermometer be at outlet point of condenser</li> <li>The direction of water flow is wrong/ condenser wrongly fixed</li> <li>Named flask used/ No water bath is used</li> <li>Boiling point/ Freezing point</li> </ul> |
| 23                 | ()<br>2)             | <ul> <li>Density / refractive index</li> <li>period 3 / Third period</li> </ul>                                                                                                                                                                                                |
| 23.                | a)                   | <ul> <li>- Period 5 / Third period</li> <li>- Y<sup>3-</sup> / p<sup>3</sup></li> <li>- Ionic radius is large – Atomic radius smaller</li> <li>- Incoming electron repelled by electron in shell / energy level</li> </ul>                                                     |
| 24.                | a)                   | Cathode - Hydrogen<br>Anode - Oxygen                                                                                                                                                                                                                                           |
|                    | b)                   | - It increases                                                                                                                                                                                                                                                                 |
|                    |                      |                                                                                                                                                                                                                                                                                |

- There would be an explosion potassium is very reactive. c) -
  - It would react with the solvent. \_
- 25. TQRL / LRQT AND LRQT 26.
  - a)
- -pbO, ZnO, pbO<sub>2</sub>, SnO,Sno<sub>2</sub>,Al<sub>2</sub>O<sub>3</sub> pb (OH0<sup>2-</sup>4, Zn(OH)<sup>2-</sup>4, Zn(OH)<sup>2-</sup>4, Na<sub>2</sub>pbO<sub>2</sub>,NaZnO<sub>2</sub>, b) NaAlO<sub>2</sub>, NaSnO<sub>2</sub>



| = 5 Moles |
|-----------|
|           |
|           |
|           |
|           |
|           |

### CHEMISTRY PAPER 233/2 K.C.S.E 1997 MARKING SCHEME.



- V) I M.p of fluoride of G is higher because fluorine is more reactive than chlorine / forms stronger ionic bonds G than chlorine/Flourone is more electronegative II reactivity of L is higher. Reactivity within metallic group increases down the group and L is below H. L looses e's easily // L is more electropositive.
- 4.

a)

- (i) To lower M.P of NaCl from 800-600<sup>o</sup>C hence reducing the cost of production of Na.
- (ii) Steel would react chlorine while graphite will not.
- (ii) M.P lower than that of the electrolyte
- Less dense than that of the eleactrolyte
- (iv) To prevent the chlorine and sodium from mixing / coming into conduct/ prevent products from mixing.
- (v) I Cathode Na+ (i) +e-  $\longrightarrow$  Na (l)
- II Anode 2Cl- (l)  $\longrightarrow$  Cl<sub>2 (g)</sub> +2e-
- (i) Manufacture of Na2O2, NaCN / alloy of Na + Pb to make T.E.L / Liquid Na coolant in nuclear reactors / Na vapour used in extraction of titanium.

(b) To prevent from reacting with air and water.



(C) At high concentration the rate of reaction is high because the more particles in solution collide at high frequency.

- (d) At lower temps; the particles have les K.e / frequency of collision is reduced/ few particles/ less activation energy.
- 6. Anhydrous /fused CaCl /CaO /quick lime (a) (i)

(ii) To remove 
$$CO_2 \longrightarrow 2Fe O_3 (s)$$

(iii)4Fe(s) + 3O2 (g)

$$3Fe(s) + 2O2_{(g)} \longrightarrow Fe3 O4_{(s)}$$

- (iii) Argon // Helium// Krypton // Neon
- Provide low temperature so that semen does not decompose// destroyed (low temp. (iv) tied with storage// decompose/destroyed.
- Conc. Sulphuric acid. b)(i)
  - NaNO<sub>3(s)</sub> + H2SO4(l)  $\rightarrow$  NaHSO<sub>4</sub>(s) + HNO<sub>3(g)</sub> // NaNO<sub>3(s)</sub> + H2SO4(l)  $\rightarrow$  Na2SO<sub>4</sub>(s) + 2HNO<sub>3</sub> (ii)
  - (iii)
    - To avoid decomposition of nitric acid by sunlight/light Ι
    - Copper react with 50% Nitric acid to form colourless NO<sub>2</sub> then NO react with O<sub>2</sub> Π to form brown fumes of NO<sub>2</sub>.
- a) 1 mole NHa4NO<sub>3</sub> is formed from 1 M of NH<sub>3</sub> 80Kg of Nh4NO3 is formed from 17Kg NH3 4800 Kg of NH4NO3 requires <u>17x4800 kg</u>

80

- = 1020Kg (penalise  $\frac{1}{2}$  mk if units are missing or wrong.
- 7. To remove excess / unreacted HCL gas. a) (i)
  - (ii) S

$$2HCl(g) + Zn(s) \longrightarrow ZnCl_2(s) + H_2(g)$$
$$PbO(s) + H_2(g) \longrightarrow Pb(s) + H2O(g)$$

- (i) Mass will be lower at the end of the experiment because the combined O<sub>2</sub> in PbO is removed/reduced.
- I To produce HCl gas /HCl<sub>(g)</sub> b) (i)

II To oxidize HCl (g) to chlorine gas/produce chlorine gas.

- Sodium hypochlorite/ NaOCl / Sodium chlorate (ii)
- Kill germs /disinfectant/antiseptic (iii)
- c) MgCl<sub>2</sub> requires 2 mol of Ag.NO3 Moles of MgCl<sub>2</sub> = 1.9 = 0.02 95 =<u>1.9</u> x 2 = 0.04 Moles of AgNO3 95 R.F.M of AgNO3 = 170 Mass of AgNO3 1.9x2x170 $= 0.04 \times 170$ = 95 6.8 gm =

### CHEMISTRY PAPER 233/1 K.C.S.E 1998 MARKING SCHEME

1. (a) -  $234U \rightarrow 230Th + 4He$ (b) - Gamma rays will penetrate through the walls of the container and causes damage

- 2. Add water to the solid mixture A dissolves while B does Not
  - Filter the mixture
  - Evaporate the filtrate to dryness

# 3. Advantage

- Prevents knocking engines
- Prevent premature ignition
- Increase the Octane rating (Number)

#### Disadvantage

Poisonous lead or lead compounds are released into the environment/ pollutes the atmospheres

4. (a) 
$$|Al(s)| = Al^{3+}(aq)| = Fe^{2+}(aq)| = Fe(s)|$$
  
 $EMF = E^{0}R. E^{0}O = (-0.44) - (-1.66) = 1.22V$   
(b) - It is always on the left cell rep  
- Correspond on iron/ element lower in E.C.S of the two  
- Has less negative  
5. (a) -D  
(b) -E  
6. ALT 1  
 $CxHy + O_{2} \times CO_{2} + \frac{y}{2} H_{3}O$   
 $XCO_{2} = \frac{y}{2} H_{2}O$   
 $3:52 = 1:44$   
 $r\frac{3.52}{44} = 0.08 = 1$   
 $\frac{1.44}{44} = 0.08$   
 $\frac{X = 1}{44} = \frac{0.08}{0.08} = 1$   
 $\frac{X = 1}{9} = 1$   
 $E.F. M = 14$   
 $N = \frac{56}{14} = 4$   
 $NF. (CH_{2})_{4} = C_{4}H_{8}$   
Mass of C = 12 x 3.52 = 0.96  
 $\frac{44}{18}$ 

|    | Moles | of $C = 0.96 = 0.08$                                                                                                                                                                                                                                                                                |
|----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Moles | of H $= 0.16 = 0.16$                                                                                                                                                                                                                                                                                |
|    | Ratio | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$                                                                                                                                                                                                                                                |
| 7. | (a)   | SO5 <sup>2-</sup><br>NH4 <sup>+</sup>                                                                                                                                                                                                                                                               |
|    | (b)   | From ammonia and sulphate based fertilizer                                                                                                                                                                                                                                                          |
|    | 3.    | FeCI <sub>2</sub> oxidation No. of Fe increase from +2 to +3<br>Or oxidation No. of Cl <sub>2</sub> decreases from 0 to -1                                                                                                                                                                          |
|    | 4.    | <ul> <li>(a) – Rxn where the rates of forward and backward rxns are the same</li> <li>(b) – The mixture becomes more yellow reasons: The equilibrium Position<br/>Shifts/ moves to the right since more OH- ions have been added</li> </ul>                                                         |
|    | 5.    | 16N<br>15P                                                                                                                                                                                                                                                                                          |
|    | 6.    | <ul> <li>(a) In Diamond all the C- atoms are joined together by covalent in a three dimensions</li> <li>(3 –D) structure/ Tetrahedral structure thus very hard</li> <li>(a) The C- atoms in graphite are bonded in layers/ hexagonal strata's, those thus slide over one another easily.</li> </ul> |
|    | 7.    | Strong acid - one which is fully dissociated when in water e.g HCI, Hi, Hi, HBr Weak Acid: one which is partially dissociated when in water e.g. CH <sub>3</sub> COOH                                                                                                                               |
|    | 8.    | (a) Because concentration of $Cu^{2+}$ is high at the beginning and decreases as the ions are discharged during electrolysis<br>(b) $Cu^{2+}$ (aq) + 2e = Cu(s)                                                                                                                                     |
|    | 9.    | (a) Ethanol<br>H H H H $I I I$ $H - C - C - OH$ $I I$ $H H$                                                                                                                                                                                                                                         |
|    |       | (b) Propanoic H H H<br>H - I - I - C<br>C - C - OH<br>I H H                                                                                                                                                                                                                                         |
|    |       |                                                                                                                                                                                                                                                                                                     |

(c) - Ethylpropanoate

10. (a) (i) - F  
(ii) - I  
(b)  
11. 
$$CH_4(g) + CI_2(g) \rightarrow CH_3CI(g) + HCI(g)$$
  
H  
H - C - H + CI - H  $\rightarrow$ C - CI + H - CI  
H  
 $414 + 244$  =  $326 + 431$   
BBE 658 BEE - BFE = 658 - 758 = -99KJ  
ALT2  
 $4(414) + 244 = 3(414) + 326 + 431$   
BBE 1900 - 1999 = -99KJ

12.



Solvent front

13. <u>ALT 1</u>  $\overline{\text{RMM}}$  of (NH<sub>2</sub>) CO = 28 - 4 + 16 = 60 NH3<sup>2</sup> : (NH2)2CO 2 x 17kg 60kg  $680 \text{ kg} = \frac{60 \text{ kg x } 680}{2 \text{ x } 17}$ = 1200kg

<u>ALT 2</u> Moles: 680000g 40,000 moles, 40,000 = 20,000 moles = 17

Mg n x R.F.M = 20,000 x 60 1200000g 1200kg

- 14. <u>ALT 1</u>
  - Add dilute HNO<sub>3</sub> to the carbonate
  - Allow the rxn to go to completion
  - Add excess dilute HCI to the mixture
  - Filter

15. I. 
$$C(s) + O_2(s) \rightarrow CO_2(g)$$
  
II  $2CO(g) + O_2(g) \rightarrow 2CO_2(g)$ 

- 16. (a) Polystyrene or polyphenylethene
- 17. (a) Zinc/Zn

(b) 
$$Zn (NH_3)_4^{2+}$$

18. 
$$P_1 + P_2$$
 Vol is constant  
 $T_1$   
 $\frac{760}{273} = \frac{P_2}{373}$   $P_2 = \frac{760 \times 373}{273} = 1038 \pm \text{mmHg}$ 

19. Sting from a bee contains an acid which causes irritation NaHCO<sub>3</sub> being alkaline neutralizes the acid

| 20. |            | R- Melting/ fusion             |
|-----|------------|--------------------------------|
|     |            | V-Boiling/vaporization         |
|     |            | W – Condensation/ liquefaction |
|     |            | U- Freezing/ solidification    |
| 21  | IN THE THE | 6                              |

- 21. IV, II, I,III
- 22. Butane

Η Η Η Η Ι Ι Ι Ι Ι Ι Ι Ι Η Η Η Η

23. (i) The Ca<sup>+</sup>, Mg<sup>2+</sup> ions in water are exchanged with Na<sup>+</sup> ions in the permutit (ii) By passing a solution of Conc. Sodium chloride through the Column (iii) Provides Ca<sup>2+</sup> required for teeth and bones formation It coats lead pipes insides hence preventing lead poisoning

24. 
$$x + 4(-2) = -1$$
  
 $x - 8 = -1$   
 $x = 7$ 

# CHEMISTRY PAPER 233/2 K.C.S.E – 1998 MARKING SCHEME

- 1. (a) To a sample of the ore add dilute sulphuric acid or hydrochloric acid (I) and warm (  $\frac{1}{2}$  )
  - Filter the mixture  $(\frac{1}{2})$
  - To a portion of the filtrate, add sodium hydroxide or ammonium hydroxide drop wise until in excess (1/2)
  - Formation of the dirty green precipitate (1/2) OR
  - To a portion of the filtrate, add sodium hydroxide or ammonia hydroxide drop wise until in excess (I) formation of brown precipitate ( $\frac{1}{2}$ ) shows presence of Fe<sup>3-</sup> ( $\frac{1}{2}$ )
  - (b) (i) Mass of oxygen = 13.30 12.66 = 0.64(g) ( $\frac{1}{2}$ ) Mass of iron = 12.66 - 10.98 = 1.68 (g) ( $\frac{1}{2}$ ) 168 = 0.03 0.64 = 0.04 52 16Rate of moles Fe: O =  $3:4(\frac{1}{2})$ Molecules formula = Fe<sub>3</sub>O<sub>4</sub>(I)
    - (ii)  $Fe_3O_4(S) + 4CO(s) \rightarrow 3Fe(s) + 4CO_2(g)$
  - (c) (i) Oxygen  $(\frac{1}{2})$ , water  $(\frac{1}{2})$ 
    - (ii) Galvanizing, painting, electroplating e.t.c
  - (d) Seawater contains ions (I), which accelerate the rate of corrosion
- 2. (a) (i). Polymerization
  - (ii) Substitution (I) (accept chlorination)
  - (b) (i) distillation
    - (ii) Sodium metal disappears/ dissolves/ clarts around ( $\frac{1}{2}$ )
      - Bubbles of a colourless gas/ effervescence (<sup>1</sup>/<sub>2</sub>) beaker become warm Sodium metal reacts with ethanol to produce hydrogen gas (I) The reaction is exothermic/ heat is evolved
    - (iii) Fuel/gasoline
      - Solvent
      - Starting material for manufacture of P.V.C, etheneglycol e.t.c
      - Skin disinfect/ antiseptic
      - In thermometer/ in making alcohol thermometers
- (c) (i) Name: Propane
  - Structural formula
  - (ii) Bromine water is decolourised (I) because is unsaturated (I) or has a double bond
  - (iii)  $C_3H_8(g) + 5O_2(g) + 4H_2O(I)$
- 3. (a) (i) Fractional distillation
  - (ii) Neutralization
  - (b) Electrolysis of brine

- (c) High pressure brings the molecules closer/ increases the concentration of gas molecules (I)The pressure shifts the equilibrium to the right hence the yield of ammonia (product) increases.
- (d)  $2NH_3(g) + H_2SO_4(aq)(NH_4) 2SO_4(aq)$
- (e) Platinum or Rhodium

Reagent

Water ( <sup>1</sup>/<sub>2</sub> ), Oxygen ( <sup>1</sup>/<sub>2</sub> )

- (f) Ammonium nitrate / NH4NO3
- (g) Fertilizer
- 4. (a) Remove oxygen (I) which could react with the element to form an oxide (b) absorb excess chloride

- Absorb moisture from the atmosphere

- (c) Sodium chloride has a high melting point (I) and the burner flame Temperature is not able to vaporize sodium chloride
- (d) Calcium oxide OR quick lime/ CaO
- (e)  $2P(s) + 3CI_2(g) 2 PCI_3(g) P_4 + 6CI_2(g) 4 PCI_3(I)$
- (f) Heat the mixture
  - Aluminium chloride sublimes
  - Cool to obtain aluminium chloride
  - Sodium chloride is left in the vessel
- 5. (a) (i) Scale (I)
  - Plotting all points correctly (I)
  - Curve (shape)
  - (ii)  $0.188 0.12 = 0.068 \mod (I)$ Therefore mass of hydrated copper (II) sulphate  $= 0.68 \ge 250 = 17g$
  - (b) (i) Moles of AgNO<sub>3</sub> =  $0.1 \times 24.1 = 2.41 \times 10^{-3}$ 1000
    - (ii) Moles of NaCI = Moles of AgNO<sub>3</sub> =  $241 \times 10^{-3}$
    - (iii) Moles of NaCI in  $250 \text{ cm}^3 = 2.41 \text{ x } 10^{-3} \text{ x } 250$ 25

(iv) R.F.M NaCI = 
$$23 + 35.5 = 58.5$$
  
Mass of NaCI in  $5 \text{ cm}^3 = 2.41 \text{ x } 10-2 \text{ x } 58.5$   
=  $1.41\text{ g}$   
(v) Mass of water =  $5.35 - 1.41$ 

$$= 3.94$$
g



### CHEMISTRY PAPER 233/1 K.C.S.E 1998 MARKING SCHEME

1. (a) -  $234U \rightarrow 230Th + 4He$ (b) - Gamma rays will penetrate through the walls of the container and causes damage

- 2. Add water to the solid mixture A dissolves while B does Not
  - Filter the mixture
  - Evaporate the filtrate to dryness

# 4. Advantage

- Prevents knocking engines
- Prevent premature ignition
- Increase the Octane rating (Number)

### Disadvantage

Poisonous lead or lead compounds are released into the environment/ pollutes the atmospheres

4. (a) 
$$|Al(s)| = Al^{3+}(aq)| = Fe^{2+}(aq)| = Fe(s)|$$
  
 $= EMF = E^{\theta}R. E^{\theta}O = (-0.44) - (-1.66) = 1.22V$   
(b) - It is always on the left cell rep  
- Correspond on iron/ element lower in E.C.S of the two  
- Has less negative  
5. (a) -D  
(b) -E  
6. ALT 1  
 $CxHy + O_2 x CO_2 + \frac{y}{2} H_3O$   
 $XCO_2 = \frac{y}{2} H_2O$   
 $3:52 = 1:44$   
 $r.3.52 = 0.08 = \frac{1.44}{44} = 0.08$   
 $r.3.52 = 0.08 = 1$   
 $Q.08 = 1$   
 $Q.08 = 1$   
 $Q.08 = 1$   
 $R = EF = CH_2 y = 2$   
E.F.M = 14  
 $N = \frac{56}{14} = \frac{1}{14}$   
M.F. (CH<sub>2</sub>)<sub>4</sub> = C<sub>4</sub>H<sub>8</sub>  
Mass of C = 12 x 3.52 = 0.96  
 $44$   
Mass of H = 2 x 1.44 = 0.16g  
 $18$ 

|    | Moles                                                                                 | of $C = 0.96 = 0.08$                                                                                                                                   |  |  |  |  |  |
|----|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|    |                                                                                       | 12                                                                                                                                                     |  |  |  |  |  |
|    | Moles                                                                                 | of H = $0.16 = 0.16$                                                                                                                                   |  |  |  |  |  |
|    | Ratio                                                                                 | 0.08 : 0.16                                                                                                                                            |  |  |  |  |  |
|    |                                                                                       | 0.08 : $0.08$                                                                                                                                          |  |  |  |  |  |
|    |                                                                                       | 1 2                                                                                                                                                    |  |  |  |  |  |
|    |                                                                                       | $EF$ : $CH_2$                                                                                                                                          |  |  |  |  |  |
|    |                                                                                       | N : 4                                                                                                                                                  |  |  |  |  |  |
|    |                                                                                       | $MF = (CH_2)_4 = C_4 H_8$                                                                                                                              |  |  |  |  |  |
| 7. | (a)                                                                                   | SO <sub>5</sub> <sup>2-</sup>                                                                                                                          |  |  |  |  |  |
|    |                                                                                       | NH4 <sup>+</sup>                                                                                                                                       |  |  |  |  |  |
|    |                                                                                       | (Acc. Sulphate ions, ammonia ions)                                                                                                                     |  |  |  |  |  |
|    | (b)                                                                                   | From ammonia and sulphate based fertilizer                                                                                                             |  |  |  |  |  |
|    | 25.                                                                                   | FeCI <sub>2</sub> oxidation No. of Fe increase from $+2$ to $+3$                                                                                       |  |  |  |  |  |
|    |                                                                                       | Or oxidation No. of Cl <sub>2</sub> decreases from 0 to -1                                                                                             |  |  |  |  |  |
|    | 26                                                                                    |                                                                                                                                                        |  |  |  |  |  |
|    | 26.                                                                                   | (a) – KXn where the rates of forward and backward rXns are the same<br>(b) The mixture becomes more vallow reasons. The equilibrium Desition           |  |  |  |  |  |
|    |                                                                                       | (0) – The mixture becomes more yellow reasons. The equilibrium rostition<br>Shifts/ moves to the right since more OH <sub>2</sub> ions have been added |  |  |  |  |  |
|    | 27                                                                                    | 16N                                                                                                                                                    |  |  |  |  |  |
|    | 27.                                                                                   | 15P                                                                                                                                                    |  |  |  |  |  |
|    | 28.                                                                                   | (a) In Diamond all the C- atoms are joined together by covalent in a three dimensions                                                                  |  |  |  |  |  |
|    |                                                                                       | (3 –D) structure/ Tetrahedral structure thus very hard                                                                                                 |  |  |  |  |  |
|    |                                                                                       | (b) The C- atoms in graphite are bonded in layers/ hexagonal strata's, those thus slide                                                                |  |  |  |  |  |
|    |                                                                                       | over one another easily.                                                                                                                               |  |  |  |  |  |
|    | 29.                                                                                   | Strong acid - one which is fully dissociated when in water e.g HCI, Hi, Hi, HBr                                                                        |  |  |  |  |  |
|    | Weak Acid: one which is partially dissociated when in water e.g. CH <sub>3</sub> COOH |                                                                                                                                                        |  |  |  |  |  |
|    | 30.                                                                                   | (a) Because concentration of $Cu^{2+}$ is high at the beginning and decreases as the ions are                                                          |  |  |  |  |  |
|    |                                                                                       | discharged during electrolysis $(1) = C_{1}(1)$                                                                                                        |  |  |  |  |  |
|    | 21                                                                                    | (b) $Cu^{2+}(aq) + 2e = Cu(s)$                                                                                                                         |  |  |  |  |  |
|    | 31.                                                                                   | (a) Ethanol                                                                                                                                            |  |  |  |  |  |
|    |                                                                                       |                                                                                                                                                        |  |  |  |  |  |
|    |                                                                                       |                                                                                                                                                        |  |  |  |  |  |
|    |                                                                                       |                                                                                                                                                        |  |  |  |  |  |
|    |                                                                                       | н н                                                                                                                                                    |  |  |  |  |  |
|    |                                                                                       |                                                                                                                                                        |  |  |  |  |  |
|    |                                                                                       | (b) Propanoic H H O                                                                                                                                    |  |  |  |  |  |
|    |                                                                                       | H - I - I - C                                                                                                                                          |  |  |  |  |  |
|    |                                                                                       | С-С-ОН                                                                                                                                                 |  |  |  |  |  |
|    |                                                                                       | I I                                                                                                                                                    |  |  |  |  |  |
|    |                                                                                       | Н Н                                                                                                                                                    |  |  |  |  |  |
|    |                                                                                       | (c) – Ethylpropanoate                                                                                                                                  |  |  |  |  |  |

32. (a) (i) - F  
(ii) - I  
(b)  
33. 
$$CH_4(g) + CI_2(g) \rightarrow CH_3CI(g) + HCI(g)$$
  
H  
H - C - H + CI - H  $\rightarrow$ C - CI + H - CI  
H  
 $\frac{414 + 244}{BBE \ 658} = \frac{326 + 431}{BFE \ 757}$   
 $\Delta Hd = BBE - BFE = 658 - 758 = -99KJ$   
 $ALT2$   
 $4(414) + 244 = 3(414) + 326 + 431$   
 $BBE \ 1900 - 1999 = -99KJ$ 

34.



Solvent front

35. <u>ALT 1</u>  $\overline{\text{RMM}}$  of (NH<sub>2</sub>) CO = 28 - 4 + 16 = 60  $NH_3^2$ : ( $NH_2$ )<sub>2</sub>CO 2 x 17kg 60kg  $680 \text{ kg} = \frac{60 \text{ kg x } 680}{2 \text{ x } 17}$ = 1200kg

<u>ALT 2</u> Moles: 680000g 40,000 moles, 40,000 = 20,000 moles = 17

Mg n x R.F.M = 20,000 x 60 1200000g 1200kg

36. <u>ALT 1</u>

- Add dilute HNO<sub>3</sub> to the carbonate
- Allow the rxn to go to completion
- Add excess dilute HCI to the mixture
- Filter

37. I. 
$$C(s) + O_2(s) \rightarrow CO_2(g)$$
  
II  $2CO(g) + O_2(g) \rightarrow 2CO_2(g)$ 

- 38. (a) Polystyrene or polyphenylethene
- 39. (a) Zinc/Zn

(b) 
$$Zn (NH_3)_4^{2+}$$

- 40.  $P_1 + P_2$  Vol is constant  $T_1$  $\frac{760}{273} = \frac{P_2}{373}$   $P_2 = \frac{760 \times 373}{273} = 1038 \pm \text{mmHg}$
- 41. Sting from a bee contains an acid which causes irritation NaHCO<sub>3</sub> being alkaline neutralizes the acid

| 42. |             | R- Melting/ fusion             |
|-----|-------------|--------------------------------|
|     |             | V-Boiling/vaporization         |
|     |             | W – Condensation/ liquefaction |
|     |             | U- Freezing/ solidification    |
| 12  | IX7 II IIII | 0                              |

- 43. IV, II, I,III
- 44. Butane

|    | Η  | Η | Н     | Η |     |
|----|----|---|-------|---|-----|
|    | Ι  | Ι | Ι     | Ι |     |
| Н- | С- | С | - C - | С | - H |
|    | Ι  | Ι | Ι     | Ι |     |
|    | Η  | Η | Н     | Н |     |

45. (i) The Ca<sup>+</sup>, Mg<sup>2+</sup> ions in water are exchanged with Na<sup>+</sup> ions in the permutit
(ii) By passing a solution of Conc. Sodium chloride through the Column
(iii) Provides Ca<sup>2+</sup> required for teeth and bones formation
It coats lead pipes insides hence preventing lead poisoning

46. 
$$x + 4(-2) = -1$$
  
 $x - 8 = -1$   
 $x = 7$ 

# CHEMISTRY PAPER 233/2 K.C.S.E – 1998 MARKING SCHEME

- 8. (a) To a sample of the ore add dilute sulphuric acid or hydrochloric acid (I) and warm (  $\frac{1}{2}$  )
  - Filter the mixture  $(\frac{1}{2})$
  - To a portion of the filtrate, add sodium hydroxide or ammonium hydroxide drop wise until in excess (1/2)
  - Formation of the dirty green precipitate (1/2) OR
  - To a portion of the filtrate, add sodium hydroxide or ammonia hydroxide drop wise until in excess (I) formation of brown precipitate ( $\frac{1}{2}$ ) shows presence of Fe<sup>3-</sup> ( $\frac{1}{2}$ )
  - (b) (i) Mass of oxygen = 13.30 12.66 = 0.64(g) ( $\frac{1}{2}$ ) Mass of iron = 12.66 - 10.98 = 1.68 (g) ( $\frac{1}{2}$ ) 168 = 0.03 0.64 = 0.04 52 16Rate of moles Fe: O =  $3:4(\frac{1}{2})$ Molecules formula = Fe<sub>3</sub>O<sub>4</sub>(I)
    - (ii)  $Fe_3O_4(S) + 4CO(s) \rightarrow 3Fe(s) + 4CO_2(g)$
  - (c) (i) Oxygen  $(\frac{1}{2})$ , water  $(\frac{1}{2})$ 
    - (ii) Galvanizing, painting, electroplating e.t.c
  - (d) Seawater contains ions (I), which accelerate the rate of corrosion
- 9. (a) (i). Polymerization
  - (ii) Substitution (I) (accept chlorination)
  - (b) (i) distillation
    - (ii) Sodium metal disappears/ dissolves/ clarts around (  $^{1\!/}_{2}$  )
      - Bubbles of a colourless gas/ effervescence (<sup>1</sup>/<sub>2</sub>) beaker become warm Sodium metal reacts with ethanol to produce hydrogen gas (I) The reaction is exothermic/ heat is evolved
    - (iii) Fuel/gasoline
      - Solvent
      - Starting material for manufacture of P.V.C, etheneglycol e.t.c
      - Skin disinfect/ antiseptic
      - In thermometer/ in making alcohol thermometers
- (c) (i) Name: Propane
  - Structural formula
  - (ii) Bromine water is decolourised (I) because is unsaturated (I) or has a double bond
  - (iii)  $C_3H_8(g) + 5O_2(g) + 4H_2O(I)$
- 10. (a) (i) Fractional distillation
  - (ii) Neutralization
  - (b) Electrolysis of brine

- (c) High pressure brings the molecules closer/ increases the concentration of gas molecules (I)The pressure shifts the equilibrium to the right hence the yield of ammonia (product) increases.
- (d)  $2NH_3(g) + H_2SO_4(aq)(NH_4) 2SO_4(aq)$
- (e) Platinum or Rhodium

Reagent

Water (<sup>1</sup>/<sub>2</sub>), Oxygen (<sup>1</sup>/<sub>2</sub>)

- (f) Ammonium nitrate / NH4NO3
- (g) Fertilizer
- 11. (a) Remove oxygen (I) which could react with the element to form an oxide(b) absorb excess chloride

- Absorb moisture from the atmosphere

- (c) Sodium chloride has a high melting point (I) and the burner flame Temperature is not able to vaporize sodium chloride
- (d) Calcium oxide OR quick lime/ CaO
- (e)  $2P(s) + 3CI_2(g) 2 PCI_3(g) P_4 + 6CI_2(g) 4 PCI_3(I)$
- (f) Heat the mixture
  - Aluminium chloride sublimes
  - Cool to obtain aluminium chloride
  - Sodium chloride is left in the vessel

- Plotting all points correctly (I)
- Curve (shape)
- (ii)  $0.188 0.12 = 0.068 \mod (I)$ Therefore mass of hydrated copper (II) sulphate  $= 0.68 \ge 250 = 17g$
- (b) (i) Moles of AgNO<sub>3</sub> =  $0.1 \times 24.1 = 2.41 \times 10^{-3}$ 1000
  - (ii) Moles of NaCI = Moles of AgNO<sub>3</sub> =  $241 \times 10^{-3}$
  - (iii) Moles of NaCI in  $250 \text{ cm}^3 = 2.41 \text{ x } 10^{-3} \text{ x } 250$ 25

(iv) R.F.M NaCI = 
$$23 + 35.5 = 58.5$$
  
Mass of NaCI in  $5 \text{ cm}^3 = 2.41 \text{ x } 10\text{-}2 \text{ x } 58.5$   
=  $1.41\text{ g}$   
(v) Mass of water =  $5.35 - 1.41$ 

$$= 3.94$$
g

(vi) 3.94 of water contains 1.41g of NaCI 100g of water = 1.41 x 100 3.94 =35.7

