H. © SE 1995 MATHEMATICS PAPER 121/1 MARKING SCHEME

SOLUTION	MARKS	ALTERNATIVE
$\begin{aligned} & \text { ?. } \sqrt{\frac{384.16 \times 0.0625}{96.04}} \\ & \sqrt{\frac{2^{4} \times 7^{4} \times 10^{-2} \times 5^{4} \times 10^{-4}}{2^{2} \times 5^{4} \times 10^{-4}}} \\ & \sqrt{2^{2} \times 5^{4} \times 10^{-4}} \\ & =0.5 \end{aligned}$	M1 M1 A1 3 marks	
$\text { 2. } \begin{aligned} & \frac{2 x-2}{6 x^{2} x-12}+\frac{x-1}{2 x-3} \\ & \quad=\frac{2(x-1)}{(3 x+4)(2 x-3)} \times \frac{(2 x-3)}{x-1} \\ & \quad=\frac{2}{3 x+4} \end{aligned}$	M1 $\frac{\mathrm{A} 1}{3 \text { marks }}$	For of question completely For concellation
$\begin{aligned} & \text { 3. Median }=7.5+\frac{(23-19.5) 4}{8} \\ & 7.5+\frac{3.5 \times 4}{8} \\ & =9.25 \end{aligned}$	M1 $\frac{\mathrm{A} 1}{2 \text { marks }}$	Cumulative graph m 1 median $=10$ A 1 $7.5+\frac{5}{8} \times 4$ M0 9.75 MO
4. Manyatta Bearing of Chamwe from Manyatta 169 ± 1 5. $\begin{aligned} & \frac{y-5}{x+8}=\frac{1}{4} \\ & y=-1 / 4 x+3 \end{aligned}$	S1 B1 B1 M1 A1 $\overline{2 \text { marks }}$	Appropriate scale Scale drawing (completely)
$\text { 6. } \begin{aligned} \frac{1}{S^{2}} & =\frac{3 V+2}{2 \pi r^{3}} \Rightarrow C^{2}=\frac{2 \pi r^{3}}{(3 r+2) s} \\ C^{2} & =\frac{2 \pi r^{3}}{3 S 4 \pi r^{3}} \\ C & =\sqrt{\frac{2 \pi r^{3}}{(3 r+2) s}} \end{aligned}$	M1 M1 $\frac{\mathrm{A} 1}{3 \text { marks }}$	

SOLUTION	M ARKS	ALTERNATIVE
$\text { 7. } \begin{aligned} & \mathrm{A}=\left\|2 x^{2}-\frac{1 x^{3}}{3}\right\| \\ &= 8-\frac{8}{3}-2 \div \frac{2}{3} \\ &= 3 \frac{2}{3} \end{aligned}$	M1 M1 A1 3 marks	Correct integration without limits. Substitution of limits
8. $\begin{aligned} & P(0)=\left[\frac{1}{2} \times \frac{2}{3}\right]+\left[\frac{1}{2} \times \frac{6}{11}\right] \\ & =\frac{20}{33} \\ & \text { Or } \frac{660}{429}=\frac{780}{1287} \end{aligned}$	M1 M1 M1 A1 4 marks	Tree diagram need not be drawn. Or equivalent for addition
$\text { 9. } \begin{aligned} & \frac{4}{3} \times \frac{22}{7} \times r^{3}=\frac{1}{3} \times \frac{22}{7} \times 9 \times 9 \times 12 \\ & r^{3}=243 \\ & r=6.24 \text { or equivalent } \\ & A=4 \\ & r^{2}=4 \times \frac{22}{7} \times 6.24 \times 6.24 \div 489.5 \mathrm{~cm}^{2} \end{aligned}$	M1 A1 4 marks	If A1 lost
$\begin{aligned} & 10.10,10+2 d, 10+6 d \\ & \frac{10+2 d}{10}=\frac{10+6 d}{10+2 d} \\ & 100+40 d+4 d^{2}=100^{0}+60 d \\ & 4 d^{2}-20 d=0 \\ & d=5 \text { or } d=0 \\ & \frac{\text { Alternative }}{4 d^{2}=20 d} \quad 8 \\ & 4 d=20 \\ & d=5 \quad 4 d^{2}-20 d=0 \\ & d=5 \text { or } d=0 \end{aligned}$	B1 M1 M1 M1 4 marks	A.P identified G.P ratio equated Simplified quadratic equation $D=0$ must be disqualified
$\begin{aligned} & \text { 11. } \frac{4 \times 12+4 \times 3}{7}=\frac{60}{7} \\ & \frac{130}{100} \times \frac{40}{7}=11.14 \end{aligned}$	M1 A. 1 M1 A1 4 marks	$\begin{gathered} \text { Accept } \frac{210}{7} \times \frac{130}{100} \quad \mathrm{~m} 2 \\ -39 \\ \text { A2 } \end{gathered}$
$\begin{aligned} & \text { 12. }\left(\begin{array}{ll} 3 & 2 \\ 4 & 5 \end{array}\right)\binom{\mathrm{S}}{\mathrm{~T}}=\binom{840}{1680} \\ & \text { inverse } \frac{1}{7}\left(\begin{array}{cc} 5 & -2 \\ -4 & 3 \end{array}\right) \\ & \frac{1}{7}\left(\begin{array}{cc} 5 & -2 \\ -4 & 3 \end{array}\right)\left(\begin{array}{ll} 3 & 2 \\ 4 \end{array}\right)\binom{\mathrm{S}}{\mathrm{~T}} \\ & =\frac{1}{7}\left(\begin{array}{cc} 5 & -2 \\ -4 & 3 \end{array}\right)\binom{840}{1680} \\ & \binom{S}{\mathrm{~T}}=\binom{120}{240} \end{aligned}$ Shirt Sh. 120, Trouser Sh. 240	B1 B1 B1 M; $\frac{\mathrm{A} 1}{4 \text { marks }}$	For mainly equation Or equivalent $\binom{\mathrm{S}}{\mathrm{~T}}=\left(\begin{array}{ccc} 1 & 5 & -2 \\ 7 & -4 & 3 \end{array}\right)\binom{840}{1680}$ If transposed used BO BO

SOLUTION	MARKS	ALTERNATIVE
$\begin{aligned} & 13 . \frac{27 \times 4 \times 60}{60 \times 30}=3.6 \mathrm{~cm} \\ & \text { Height }=23.6 \mathrm{~cm} \\ & 60 \times 30 . \mathrm{h}=27 \times 4 \times 60 \\ & H=3.6 \mathrm{~cm} \quad H f=23.6 \end{aligned}$	M1 M1 A1 3 marks	For division quantity through if log used
```14. }\angle\textrm{ACE}=6\mp@subsup{0}{}{\circ}\mathrm{ cyclic quadrilatera! \angleCDA = 100 }<\mathrm{ sum of triangle or }\angle\textrm{ABE}=10\mp@subsup{0}{}{\circ}\textrm{ext}<\mathrm{ equal \angleFED = 40```	B1   B1   B1  	or $\angle \mathrm{DCE}$ or $\angle \mathrm{BEA}$ or $\angle E B C=80^{\circ}$ or $\angle E D F=$ $80^{\circ}$   $40^{\circ}$ must be worked for NOT just seen
$\begin{aligned} & 15.2 .5000-3750=21250 \\ & \begin{array}{l} \text { Amount to pay } 21250+21250 \times \frac{40 \times 2}{10} \\ =38250 \\ \text { One instalment }=\frac{38250}{24}=\text { Sh. } 1,593.75 \end{array} \end{aligned}$	M1 $\frac{\mathrm{A} 1}{4 \text { marks }}$	Working $5.1+21250$   From 5. G from amount owing If Ad lost
$\begin{aligned} 16 \cdot \frac{(2 x+30) \times 60}{195} & =x-20 \\ x & =76 \mathrm{~km} \end{aligned}$   Actual distance $=182 \mathrm{~km}$ $2(76)+30=182 \mathrm{~km}$		
17.(a) $\begin{aligned} & 10000 \times 1.2=12000 \\ & 22000 \times 1.2=26400 \\ & 36400 \times 1.2=43680 \end{aligned}$ $\begin{aligned} & \text { (b) } \begin{array}{ll} A=43680(1.2)^{8} \\ =43680(4.2998) \\ \text { Log } \\ \text { No } & \text { Log } \\ 43680 & =0403) \\ 1.2^{8} 0.0792 \times 8 & =0.6403 \\ 1.879 \times 10^{8} & =52739 \end{array} \end{aligned}$   Sh. 187900   Sh. $187900-$ Sb $30000=157900$	M1    $M 1$    $M 1$ $A 1$   $M 11$            $M 1$    $A 1$    $M 1$ $A 1$   8 marks	For logs and operations follow through if logs used.   To improve accuracy can use a calculator nowadays.
18. (a) (i) $A V-A D+D V=a+c$   (ii) $B V=B A+A V=a+c-b$   (b) $\begin{aligned} & B O=1 / 2 B D=1 / 2(a-b) \\ & =1 / 2(b-a)+a+c+b \\ & 1 / 2 a+c-1 / 2 b \\ & O M=\frac{3}{7} O V \\ & =\frac{3}{7}\left(\frac{1 a}{2}+c-\frac{1 b}{2}\right) \\ & B M-B O+O M \\ & =\frac{1}{2}(a-b)+\frac{3}{7}\left(\frac{1 b}{2}+c-\frac{1 b}{2}\right) \\ & =\frac{7 a-7 b+3 a+6 c-3 b}{14} \\ & =\frac{10 a-10 b+6 c}{14} \\ & =\frac{1}{7}(5 a-5 b+3 c) \end{aligned}$	B1   M1 A1   M1   M1   M1   A1	Ow - 1 vector sign not used Follow the route $\begin{aligned} & \text { or }-B V+V m \\ & =a+c-b+\frac{4}{7}-\frac{1 a}{2}-c+\frac{1 b}{2} \\ & =\frac{10 a-10 b+6 c}{14} \\ & =\frac{1}{7}(5 a-5 b+3 c) \end{aligned}$   Accept $\frac{5 a}{7}-\frac{5 b}{7}+\frac{3 c}{7}$



SOLUTION	MARKS	ALTERNATIVE
23. (a) Plotting $A^{1} B^{1} C^{1} D^{1}$ and drawing $A^{1} B^{1} C^{1} D^{1}$   (b) (i) $\left[\begin{array}{cc}-2 & -1 \\ 1 & -1\end{array}\right]\left[\begin{array}{cccc}0 & 0 & -5 & -2 \\ 2 & 6 & 6 & 2\end{array}\right]$ $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$   Matrix $\left[\begin{array}{cccc} -2 & -6 & 4 & 2 \\ -2 & -6 & -11 & -4 \end{array}\right]$   (ii) Plotting of $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$   (c) $\begin{align*} & {\left[\begin{array}{ll} a & b \\ c & d \end{array}\right]\left[\begin{array}{cccc} -2 & -6 & 4 & 2 \\ -2 & -6 & -11 & -4 \end{array}\right]\left[\begin{array}{cccc} 2 & 6 & 6 & 2 \\ 0 & 0 & 5 & 2 \end{array}\right]} \\ & -2 \mathrm{a}-2 \mathrm{~b}=2 \ldots \ldots \text { (i) }-2 \mathrm{c}-2 \mathrm{~d} \ldots \ldots \ldots . \text { (i) }  \tag{i}\\ & 4 \mathrm{a}-11 \mathrm{~b}=6 \ldots \ldots . \text { (ii) } 2 \mathrm{c}-4 \mathrm{~d}=2 \ldots \ldots \text { (ii) } \end{align*}$ $\mathrm{a}=\frac{-1}{3} b=\frac{-2}{3} c=\frac{1}{3} d=\frac{1}{3}$   matrix in $\left[\begin{array}{ll}\frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{1}{3}\end{array}\right]$	B1   A1   B1   M1   M1   A1	In case the centre is not ( 0.0 ) award and mark out doing the last A1   Accept positive $1 / 4$ turn $\left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right] \mathrm{M} 1$ $\left[\begin{array}{cc} -2 & -1 \\ 1 & -1 \end{array}\right]\left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right] \text { or }\left[\begin{array}{ll} -1 & +2 \\ -1 & -1 \end{array}\right]$   Matrix is $1 / 3\left[\begin{array}{ll} \varrho^{10} & +2 \\ e^{0} & -1 \end{array}\right]=\left[\begin{array}{ll} \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} \end{array}\right]$   Follow through if different centre of ration is used
24. Lat of $B=43.75^{\circ}$   (ii) $r=6370 \operatorname{Cos} 43.75^{\circ}$   angle between B and $\mathrm{C}=60^{\circ}$ $\begin{aligned} & \mathrm{BC}=\frac{60}{360} \times \frac{22}{7} \times 637 \mathrm{u} \cos 43275^{\circ} \\ & =\frac{60}{360} \times 2 \times \frac{22}{7} \times 637080.7224 \\ & =4820.8: 6 \mathrm{~km} \end{aligned}$   (b) $\frac{60 \times 4-4 \mathrm{hrs}}{60}$   Local time ate in 2100 hours or 9.00 pm	B1   M1   B1   M1   M1   A1   A1   8 marks	Only when subtraction is done to 430-45 $37^{\circ}+23^{\circ}=60^{\circ}$ $\operatorname{Cos} 43.75=1.8587$   Must be correct 0.7224   Either both B1 or one B1 lost   Follow through logs

## K.C.SE 1995 MATHEMATICS PAPER 121/2 MARKING SCHEME

SOLUTION	MARKS	ALTERNATIVE
1. $\begin{aligned} 1.3403 & \times 10^{-2} \\ = & 0.13403 \end{aligned}$	M1   M1   M1   A1.   3 marks	Apply Mt - 2 if a candicate was square root   All two logs   Multiplication \& division of his logs   Subtraction of logs   Alternative   Accept standard form
2. $\begin{aligned} & y=2 x-3 \\ & x^{3}-x(2 x-3)=-4 \\ & (x+1)(x-4)=0 \\ & =x=-1 \text { or } x=4 \\ & \text { and } y=-5 \text { or } y=5 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & M 1 \\ & M 1 \\ & A 1 \\ & \hline 4 \text { marks } \\ & \hline \end{aligned}$	Equation in one unknown Correct simplification and equation Factorization of this equation   Substitution in the formula
3. $(65+50+50): 3$ $\left.\begin{array}{l} (50+50+45): 3,(50+45+45): 3 \\ (45+45+45): 3,(45+45 \div 40) \text { and } \\ (45+40+40): 3 \\ \text { Moving av55,48, 47, 45, 43, 42 } \end{array}\right\}$	M1   M1   A. 1   3 marks	
4. $x$ - section area $=1 / 2 \times 3 \times 3 \operatorname{Sin} 60^{\circ}$ $1 / 2 \times 3 \times 3 \times 0.8660$   Volume $=1 / 2 \times 3 \times 3 \times 0.866 \times 0.25$ $=97.43(97.425)$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { AI } \\ & \hline 3 \text { marks } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { or } 45(45-3)(45-3)(45-3) \\ & 3.875 \times 25 \end{aligned}$
5. $\begin{aligned} & 7^{2(x) 1)}+7^{2 x}=350 \\ & 49 \times 7^{2 x}+7^{2 x}=350 \\ & 50 \times 7^{2 x}=350 \\ & 7^{2 x}=7 \\ & =2 x=1 \\ & x=1 / 2 \end{aligned}$	M1 M1 M1 $\frac{A 1}{4 \text { marks }}$	$\begin{aligned} & 49 \times 1 \div 49 x=350 \\ & 49 \times 49 x \div 49 x=350 \\ & 50 \times 49 x=350 \\ & 49 x=7 \\ & 49 x=491 / 2 \end{aligned}$   If logs used follow through
6. $\begin{aligned} & \binom{x}{y}=\binom{-2}{2}-\binom{-1}{2}=\binom{-3}{0} \\ & \binom{x}{y}=\binom{-3}{-3},\binom{-3}{0} \\ & =\binom{0}{-3} \end{aligned}$	B1 $\frac{\mathrm{B} 1}{2 \text { marks }}$	Allow for sketch of the translation vector   Do not accept final answer in sector form
$\begin{aligned} & \text { 7. V.S.E }=3^{3}: 5^{3}=27: 125 \\ & \text { Vol of larger tank }=\frac{8.1 \times 125}{27} \\ & =37.5 \mathrm{~m}^{3} \end{aligned}$	M1   M1   A1   3 marks	
8. $\begin{aligned} & \frac{3 x^{2}-1-\frac{-(2 x+1)(x-1)}{x^{3}-1}}{=\frac{x^{2}+x}{x^{2}-1}} \\ & =\frac{x(x+1)}{(x-1)(x+1)}=\frac{x}{x-1} \end{aligned}$	M1   M1 $\frac{\mathrm{A} 1}{3 \text { marks }}$	Correct expression under one denominator
9. $\begin{aligned} & \operatorname{Sin} \theta=\frac{9}{27} \times 0.333 \\ & \Rightarrow \theta=19^{\circ} 28\left(19.47^{\circ}\right) \\ & =19^{\circ} 28^{\circ}+90 \\ & =109^{\circ} 281\left(109.47^{\circ}\right) \end{aligned}$	$.11$ $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline 3 \text { marks } \end{aligned}$	$\begin{aligned} & \operatorname{Cos} x-0.333 \\ & =70^{\circ} 32\left(70.53^{\circ}\right) \\ & 180-70^{\circ} 32 \end{aligned}$



SOLUTION	MARKS	ALTERNATIVE
$\begin{aligned} & \text { 10.ar }=16 \cdot a r^{4}=2 \\ & \frac{\operatorname{ar}}{\operatorname{ar}}=\frac{2}{16} \Rightarrow r^{3}=\frac{1}{8} \\ & r=1 / 2 \\ & \text { and } a=32 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \hline 3 \text { marks } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { or } \frac{16}{r} r^{2}=2 \\ & \text { Cao } \end{aligned}$
$\begin{aligned} 11 . \angle \mathrm{PCB} & =45^{\circ} \text { or } \angle \mathrm{DCO}=40^{\circ} \text { or } \\ \angle \mathrm{BCD} & =140^{\circ} \\ \therefore \angle \mathrm{BAD} & =40^{\circ} \end{aligned}$	B1   B1   2 marks	Allow B1 B1 for $\angle \mathrm{PCO}=140^{\circ}$ $=\angle B A D=40^{\circ}$
$\begin{aligned} & 12 . B A=31+4 j-(81-j)=51 \div 5 j \\ & \left.C A=\frac{3}{5}(-51+5 j)^{-}-31 \div 3 j\right) \\ & D C-2(-81+j)-161+2 j) \\ & D A=2(-8 j+j)+(-3 j+3 j) \\ & =-191 \div 5 j \end{aligned}$	M1   M1   M1   A1   4 marks	Or equivalent $\begin{aligned} & B A=a-a b \\ & C A+\frac{3}{5}(a-b) \\ & D A-2 b+\frac{3 a}{5}-\frac{3 b}{5} \\ & B A=a-b \end{aligned}$
	$3$	$\begin{aligned} & C A=3(a-\operatorname{la})=\frac{3 a}{5}-\frac{3 b}{5} \\ & D C=-2 b \\ & D A=2 b-\frac{2 a}{5}-\frac{3 b}{5} \\ & =\frac{\mathrm{m} 1}{5}+\frac{3 a}{5} \\ & =\frac{12}{5}(81-j)+\frac{12}{5}(31+4) \\ & =-191 \div 5 \mathrm{~m} \\ & \end{aligned}$
$\begin{aligned} & \text { 13. } \log \left(x^{3} \times 5 x\right)=\log \left(2^{5} \div \frac{2}{5}\right) \\ & x^{1} \times 5 x=\left(2^{5} \div \frac{2}{5}\right) \\ & 5 x^{2}-80 \rightarrow x^{4}=16 \\ & \Rightarrow x=2 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \frac{\text { A1 }}{3 \text { marks }} \end{aligned}$	$3 \log x \times \log 5 x=5 \log 2 \log 2$    $4 \log ^{5}$ $m 1$   $4 \log _{x} x-4 \log ^{2}$ $m 1$   $x=2$ $m 1$
$\begin{gathered} 14 . \frac{4}{3} \times \frac{22}{7} \times r^{3}=\frac{22}{7} \times 11^{2} \times 5 \\ r^{3}=\frac{121 \times 50 \times 3}{4} \\ r=\sqrt[3]{4537.5}=16.56 \end{gathered}$	M1   A1   2 marks	Substitutions and equating
$\begin{aligned} & 15.500-16 a=b, 16=500=16 a+4 b \\ & 800=25 a+b, 25 \Rightarrow 800=25 a+5 b \\ & \frac{2500-100 a(+20 b}{700=20 a} \\ & a=35 \text { and } b=-15 \\ & p=35 L-15 L \end{aligned}$	B1 B1 A1 $\frac{\text { B1 }}{5 \text { marks }}$	Attempt to eliminate one variance from variation   Must come from correct variations Given if AO lost but m 1 must be correct
$\begin{aligned} & \text { 16. Area }=2(8+6.5+5.6+6+6.4+4.7) \\ &=2(8+6.5+5.6+6+6.4+4.7) \times 25 \\ &=2 \times 37.2 \times 25 \times 100 \text { or equivalent } \\ &=186000 \text { ha } \end{aligned}$	M1   M1   A1   5 marks	At least 4 reading within 10.1 For conversion to $\mathrm{Km}^{2}$ or km to hectares
```17.(a) Area of path \(=\frac{22}{7} \times 49^{2}-\frac{22}{7} \times 35^{2}\) \[ =3696 \mathrm{~m}^{2} \] \\ Area of slab \(=\) \[ \frac{22}{7} \times 352-4 \times 4 \times 3=3850-48=3082 \mathrm{~m}^{2} \] \[ \text { Total cost }=3696 \times 300+3850 \times 400 \] \[ \text { Amount not spent } \frac{20}{100} \times \frac{115}{100} \times 2629600 \] \[ =604808 \]```   (b) Actual expenditure $=\frac{80}{100} \times \frac{115}{100} \times 2629100=2419232$	M1 A1 M1 $M 1$ A1 $\frac{B 1}{8 \text { marks }}$	


K.C.S.E 1996 MATMEMATICSPAPER 12U/EMARKINGSCHEME

SOLUTION	MARKS	ALTERNATIVE
7. (a) $21000 \times 48-560000$ $10080000-560000$ (b) $448000-\frac{560000 \times \mathrm{R} \times 4}{100}$ $\begin{aligned} & r=\frac{44800 \times 100}{560000 \times 4} \\ & =20 \% \end{aligned}$	M1 A1 M1 A1 4 marks	
$\text { 8. Cap of the tank } \begin{aligned} & =3.4 \times 2.8 \times 3 \times 1000 \\ & =20160 \text { litres } \\ \text { Amount needed } & =20160-3600 \\ & =16560 \text { litres } \\ \text { Time } & =\frac{16560}{0.5 \times 60 \times 60} \\ & =92 \text { hours } \end{aligned}$	$\begin{array}{\|l} \hline \text { M1 } \\ \text { M1 } \\ \text { M1 } \\ \frac{A 1}{4 \text { marks }} \\ \hline \end{array}$	When converting litres For the subtraction $\begin{aligned} & 2.4 \times 2.8 \times y \times 100=3600 \\ & y=0.5357 \end{aligned}$
9. $17500 \times \frac{95}{5}=332500$	M1 A1	$\begin{aligned} & \frac{5.5}{100}=175000^{5} \\ & S=350,000 \\ & \therefore=350000-17500=332,500 \end{aligned}$
$\begin{aligned} & 10.25,289,4,484,4806 \\ & 0=\sqrt{\frac{806}{5}} \\ & =\sqrt{161.2} \\ & =12.7 \end{aligned}$		Bo if item missing For $\frac{806}{5}$ For sqrt. Method of S.D manipulation if BO
$\text { 11. } \begin{aligned} A^{2} & =\left\{\begin{array}{ll} 1 & 2 \\ 4 & 3 \end{array}\right\}\left\{\begin{array}{ll} 1 & 2 \\ 4 & 3 \end{array}\right\}=\left\{\begin{array}{cc} 9 & 8 \\ 16 & 17 \end{array}\right\} \\ B & =\left\{\begin{array}{ll} 9 & 8 \\ 6 & 17 \end{array}\right\}=\left\{\begin{array}{ll} 1 & 2 \\ 4 & 3 \end{array}\right\}=\left\{\begin{array}{ll} 8 & 0^{6} \\ 122^{2} \end{array}\right\} \end{aligned}$	$\begin{array}{ll} \text { M1 } & \text { A1 } \\ \text { M1 } & \text { A1 } \\ \text { A1 } & \\ \hline 4 \text { marks } \\ \hline \end{array}$	If A1 above lost But first must be second
$\begin{gathered} 12 \cdot \frac{5}{2} \theta-210^{\circ}, 330 \\ \theta=\frac{420^{\circ}}{5}, \frac{660^{\circ}}{5} \\ =84^{\circ}, 1328 \end{gathered}$	$\begin{aligned} & \mathrm{B} 1 \\ & \frac{\mathrm{~B} 1}{2 \text { marks }} \\ & \hline \end{aligned}$	
$\begin{aligned} \text { 13.B.P } & =\frac{144}{6} \times 100=2400 \\ \text { S.P } & =\frac{165}{100} \times \frac{144}{6} \times 100=3960 \end{aligned}$ Let pineapples sold at Sh. 72 for every 3 be x and at Sh. 60 for every 2 be 144 - x. $\begin{gathered} \frac{144-x}{2} \times 60+\frac{x}{3} \times 72=3960 \\ 4320-30 x+24 x=3960 \\ 60 x=360 \\ x=60 \end{gathered}$	M1 M1 $\frac{\mathrm{A} 1}{3 \text { marks }}$	$\begin{aligned} & \mathrm{BP}=\frac{144}{6}=100 \\ & \mathrm{SP}=\frac{\mathrm{x}}{3} \times 72+\frac{144 \mathrm{x}}{2} \times 60 \\ & 24 \mathrm{x}+(144-\mathrm{x}) 30 \end{aligned} \begin{array}{rl} 24 \mathrm{x}+(144-\mathrm{x}) 30-2400 \\ \quad=2400 & \mathrm{~m} 1 \\ \quad=55 & \mathrm{~m} 1 \end{array}$
$\begin{aligned} 14 \cdot \frac{2 T}{m} & =U^{2}-V^{2} \\ V^{2} & =U^{2}-\frac{2 T}{3} \\ V & =\sqrt{U^{2}-\frac{2 T}{m}} \end{aligned}$	M1 M1 $\frac{\mathrm{A} 1}{3 \text { marks }}$	$\begin{aligned} & M u^{2}-M v^{2}=2 T \\ & M V^{2}=M u^{2}=2 T \\ & V^{2}=M v^{2}-2 T \\ & V^{2}=\frac{M u-2 T}{M} \\ & V=\sqrt{\frac{M u^{2}-2 T}{M}} \end{aligned}$ m1

SOLUTION	MARKS	ALTERNATIVE
$\begin{aligned} 15 . R & =8.5 \\ r & =5.5 \\ v & =\pi R^{2} h-\pi r^{2} h \\ = & \frac{22}{7} \times 14(8.5-5.5)(8.5 \div 5.5) \\ & =44(3)(14) \\ & =1848 \end{aligned}$	$\begin{aligned} & B 1 \\ & M 1 \\ & \frac{A 1}{3 \text { marks }} \end{aligned}$	Award m 1 for $(8.5-6.5)(8.5+6.5)$ only CAO
$\begin{array}{\|l} \text { 16. Let speed of } B \text { be } \times \mathrm{km} / \mathrm{h} \\ \text { and " " } \mathrm{A} \text { be }(x+5) \mathrm{km} / \mathrm{h} \\ \text { Time for } A=\frac{3120}{x+5} \mathrm{hrs} \\ \text { Time for } B=\frac{3120}{x} \mathrm{hrs} \\ =\frac{3120}{x}-4=\frac{3120}{x+5} \\ 3120(x+5)-4 x\left(x^{15}\right)=3120 x \\ 3120 x+15600-4 x^{2}-20 x=3120 x \\ 4 x^{2}+20 x-15600=0 \\ x^{2}+5 x-3900=0 \\ (x-60)(x+65)=0 \\ x=60 \mathrm{~km} / \mathrm{h} \\ \hline \end{array}$	B1 M1 M1 M1 A1 5 marks	
17.(a) (b) gradient $=\frac{440-305}{25-12}=10 \frac{5}{13}=10.385$ (c) $e=\frac{135}{13} d+175$ (d) $E=\frac{135}{13}(9)+175=268.46$		
18.(a) $13120+3000=16420$ sh per month $\frac{16420}{20}=£ 821$ (i) $325 \times 2=650$. $325 \times 3=975$ $171 \times 4=\underline{684}$ 2309 before relief		

(ii) $2309-455=1854$ (b) Other deductions $100+280+2624=3004$ (i) Total monthly deductions $=488$ (ii) Net income $=16420-4858$ $=11,562 /=$		
$\text { 19. } y=3 x^{2}-4 x+1$ (a) $\frac{d y}{d x}=6 x-4 \quad$ where $x=2 \frac{d y}{d x}=8$ (b) Let $m(x y)$ be a point on the curve (i) $\begin{aligned} & \frac{y-5}{x-2}=8 \\ & y=8 x-16+5 \\ & y=8 x-11 \end{aligned}$ (ii) $\tan \theta=8 \quad \theta=82.8^{\circ}$ (iii) gdt of perpendicular $=-1 / 8$ $\begin{aligned} & \frac{y-5}{x-2}=-1 / 8 \\ & 8 y-40=-x+2 \\ & 8 y+x=42 \end{aligned}$		
$\begin{aligned} & \text { 20. (a) } 131+49=180^{\circ} \\ & \text { (b) } \frac{180}{360} \times \frac{22}{7} \times 2 \times 6370 \cos 36=16,196.18 \mathrm{~km} \\ & \text { (c) } \frac{x}{360} \times \frac{22}{7} \times 2 \times 6370 \cos 36=840 \\ & \times=\frac{840 \times 9}{11 \times 91 \times 0.8090}=9.34 \\ & \begin{aligned} \text { Town C longitude } & =131^{\circ}-9.34^{\circ} \\ & =121.66^{\circ} \mathrm{W} \end{aligned} \end{aligned}$		
	B1 M1 A1 M1 A1 M1 $\frac{\mathrm{A} 1}{8 \text { marks }}$	
22.(a) (1) $A C=O A+O C$ $=a+b$ $\text { (b) } \begin{aligned} \mathrm{BN} & =B A+A N \\ & =-b \frac{-2 a}{3} \end{aligned}$ (c) (i) $\begin{align*} & A X=h A C, B X=k B N \\ & O X=O A+A X=a+h(b-a) \ldots \ldots(1) \\ & O X=O A+A B+B X \\ & a+b+K(-b-2 a) \ldots \ldots \ldots \ldots \ldots(2) \tag{2}\\ & (1-h) a+h b=\frac{(1-2 k)}{3} a+(1-k) b \\ & (1-h) a+h b=\frac{(1-2 k)}{3} a+(1-k) b \\ & 1-h 1-2-k \ldots \ldots(4) \tag{3}\\ & h=1-k \ldots \ldots \ldots \ldots \ldots \tag{4} \end{align*}$	B1 M1 A1 M1 M1 M1 A1	

$\begin{aligned} & \text { h } \frac{2}{5} \quad k=\frac{3}{5} \\ & \text { (ii) } O X=a+\frac{2}{5}(b-a) \\ & =\frac{3 a}{5}+\frac{2 b}{5} \end{aligned}$	$\frac{\mathrm{B} 1}{8 \text { marks }}$	
23. (a) Bisecting $\angle B A D$ (b) Construction of 1 at B and at A " 45° or 135° at B Bisecting 45° or 135° to get $671 \frac{1 / 2^{\circ}}{}$ at B Construction of 1 bisector of $\dot{A} B$ Identification of $A B$ Identification of the centre 0 Identification of the locus P (c) Size of the $\angle A B C=131^{\circ} \pm 1^{\circ}$	B1 8 marks	A construction of $67 \frac{1}{2}$ at A If complete circle drawn BO unless otherwise illustrate
24. (a) (i) $P(B)=8 / 15$ (ii) $P(g$ or $R)=7 / 15$ (b) (i) P (first two pens picked are both green) $\frac{2}{15} \times \frac{1}{14}=\frac{1}{105}$ or $\frac{2}{210}$ any other multiples $\text { (ii) } \begin{aligned} & \frac{8}{15} \times \frac{5}{14}+\frac{2}{15} \times \frac{5}{14}+\frac{5}{15} \times \frac{8}{14}+\frac{1}{15} \times \frac{2}{14} \\ & \frac{40+10+40+10}{15 \times 14} \\ & =\frac{10}{21} \end{aligned}$	B1 B1 B1 M1 A1 M1 M1 $\frac{\mathrm{A} 1}{8 \text { marks }}$	For tree diagram branches required For both b(i) and (ii) follow through a multiple of ratio 8:2:5 M1 All produces For summary products It tree diagram missing $0 w-1$

K.C.SE 1996 MATHEMATICS PAPER 121/2 MARKING SCHEME

SOLUTION	MARKS	ALTERNATIVE
$\text { 1. } \begin{aligned} \sqrt{\frac{6.5 \times 25.6}{25 \times 8 \times 5}} & \\ & =\sqrt{16} \\ & =4 \end{aligned}$	M1 $\begin{aligned} & \text { M1 } \\ & \frac{\text { A1 }}{4 \text { marks }} \end{aligned}$	Removal of dp in denominator $M t-2$ Use of log
2. $\begin{aligned} & R=\frac{k}{d^{4}}-2-\frac{k}{3^{2}} \\ & k=18 \end{aligned}$ When $d=4$ $R=\frac{18}{4^{2}}=\frac{18}{16}$ $=1.125 \text { or } 1 \frac{1}{4} / 8$	M1 $\begin{aligned} & \text { M1 } \\ & \frac{A 1}{3 \text { marks }} \end{aligned}$	See constant K-m1 But first mo Use 'his' k but AO or $9 / 8$ CAO
3. Let Ali have a goats $\begin{aligned} & =a+a+2+3(a+2)+a+2+3(a+2-10 \\ & =9 a+6 \\ & 9 a+6-17 \times 3 \\ & 9 a=45 \\ & A=5 \end{aligned}$ $\text { Odupoy sold } 28-10=18 \text { goats }$	$\begin{aligned} & B 1 \\ & M 1 \\ & \frac{A 1}{4 \text { marks }} \end{aligned}$	or the total rfast be for all or equivalent $9 \mathrm{~m}-12,3 \mathrm{k}-12$ $m-7, k=12$ allougif B1 and m1 are earned
4. Ksh. bought $=98 \times 84=77112$ £ bought $=\left\{\frac{918 \times 84}{85}\right\}=£ 907.2$ £lost $=£ 918 £ 907.2=£ 10$		$\begin{aligned} & \frac{\mathrm{C} 912}{95} \\ & \frac{918}{85} \\ & 918 \quad \frac{92.81}{85}=10.8 \\ & \frac{918}{85} \frac{(155-84)}{85}=\frac{918}{85}=10.8 \end{aligned}$
5.	M1 M1 $\frac{A 1}{3 \text { marks }}$	Construct segment centre B Identifying second centre D Constructing segment with new centre D. Note: apply $0 w-1$ circle are complete and lock not identified.
$\text { 6. } \begin{aligned} &\mathrm{P} \text { (both winniog })=\frac{3}{8} \times \frac{4}{7}=\frac{12}{56} \\ &=\frac{3}{14} \\ & \mathrm{P} \text { (at least one winning) } \\ &=1-\frac{5}{8} \times \frac{3}{7}=1-\frac{15}{56}=\frac{41}{56} \end{aligned}$	M1 A1 $\frac{\mathrm{M1}}{4 \text { marks }}$	$\begin{aligned} & 3 / 8, \quad 4 / 7 \quad \\ & v / 7 \quad 8 / 7 \\ & \text { Or } 3 / 8 x^{4} / 7+3 / 8 x^{3} / 7++5 / 8 x^{4} / 7 \\ & \frac{12}{56}+\frac{9}{56}+\frac{20}{56}=\frac{41}{56} \end{aligned}$
$\text { 7. } \begin{aligned} & 1+x 2=(2 x-)^{2}-1 \\ & 3 x^{2}-4 x-1=0 \\ & x=\frac{4 \pm \sqrt{28}}{6} \\ & =1.549 \end{aligned}$	M1 M1 $M 1$ A1 4 marks	Use Pythagras therorem $1+x^{2} \text { and }(2 x-1)^{2}=4 x^{2}-4 x$ Simplification and equation to zero or equivalent For choosing positive root only
$\text { 8. } \begin{aligned} & \text { Area }=S^{4}\left(2 x^{3}-5\right) d x^{\checkmark} \\ &=\left[\frac{x^{4}}{2}-5 x\right]_{2}^{4} \checkmark \\ &=108+2 \\ &=110 \text { Sq units } \checkmark \end{aligned}$	M1 iv1 A1 3 marks	Integration By numerical substitution all coordinates m1 m1 A1 4 strips area $=111.4915$ 8 strips area $=110.38$ (110.3708)

SOLUTION	MARKS	ALTERNATIVE
9. $\begin{aligned} & =2^{3(4 \times 3)} \\ & \Rightarrow 4 x^{2}=12 x-9 \\ & 4 x^{2}-12 x+9=0 \\ & =(2 x-3)(2 x-3)=0 \\ & \quad x=11 / 2 \end{aligned}$	M1 M1 A1 3 marks	$4 \mathrm{x}^{2}=3(4 x-3)$
10. Vol. of container $\begin{aligned} & =36 \times 24 \times 18=15,558 \mathrm{~cm}^{3} \\ & \text { v.s.f }=(\text { L.S.F })^{3}=1: 216 \\ & \Rightarrow 216=15,558=\frac{15558}{216}=72 \mathrm{~cm}^{2} \\ & 1=? \quad 72 \mathrm{~cm}^{2} \end{aligned}$	B1 M1 M1 A1 4 marks	$\begin{array}{\|l\|} \hline \text { or } \\ 6 \times 4 \times 3 \end{array}$
$\begin{aligned} & \text { 11. Missing values of } y: 26,138 \\ & \text { Area }=1 / 2 \times 2(10+230)+2(6+26+70138) \\ & =240+480 \\ & =720 \end{aligned}$	B1 M1 M1 A1 4 marks	Integration used MR - 2 Simplification formula Simplification of inner bracket
	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} 1 \\ & \frac{\mathrm{~A} 1}{3 \text { marks }} \end{aligned}$	Subtraction of $a=-0.2$
13. (a) $\text { (b) } \begin{aligned} & A C^{3}-2(a)^{2}+(2 a)^{2}-8 a^{2} \\ & A C=2 a \sqrt{2} \Rightarrow 1 / 2 A C=a \sqrt{2} \\ & \operatorname{Cos} \theta=a \frac{\sqrt{2}}{3 a}=\frac{\sqrt{2}}{3}=\frac{1.414}{3}=0.4713 \\ & \theta=61^{\circ} 53^{\circ}\left(61.88^{\circ}\right)^{\circ} \end{aligned}$		$\begin{aligned} \operatorname{Cos}= & A C^{2}+V C^{2} V A^{2} \\ & 2 A C V C \\ & \frac{2}{\sqrt[3]{2}} \\ = & 0.476 \end{aligned}$
14. OUT OF SYLLABUS A?		
15. OUT OF SYLLABUS ${ }^{\text {a }}$		
16. $\begin{aligned} & (1+\sqrt{3})(1 \sqrt{3})=1-3=2^{2} \\ & \frac{1}{1+\sqrt{3}}=\frac{1}{1+\sqrt{3}} \times \frac{1-\sqrt{3}}{1-\sqrt{3}}=\frac{1-13 \sqrt{2} 21}{\sqrt{2}-2} \\ & \frac{-0.7321}{-2}=0.366 \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \frac{\mathrm{~B} 2}{2 \text { marks }} \end{aligned}$	Must make use of -2
$\begin{aligned} & \text { 17. (a) (i) Total collection } \end{aligned}=\text { Sh. } 80 \times 25 \times 6$ (b) The day's collections $=\frac{80}{100} \times 12000$ Shares $\frac{2}{5} \times 3700$ or $\frac{3}{5} \times 3750$ Sh. 1500 and Sh. 2250	M1 A1 M1 A1 M1 M1 A1 8 marks	MRE -34 trip used (i) 6000 (ii) 150 $\frac{80}{100} \times 600=4800$ $\frac{80}{100} \times 25-80 \times 69,600$ C.A.O. $4800 \quad 5850$ $\frac{2}{3}(-10.50)$ m 1 $\frac{3}{5}(-10.50)$ m 1 For both CAO
$\begin{aligned} & \text { 18. (a) (i) } \angle \mathrm{BAC} \text { or } \angle \mathrm{BCA}=1 / 2 \times 90^{\circ}=45^{\circ} \\ & \angle \mathrm{CAD}=180-(90+25) \text { or } 1 / 2 \times(180-2 \times 25) \\ & =65^{\circ} \\ & \angle \mathrm{BAD}=45^{\circ}+65^{\circ}=110^{\circ} \\ & \text { (ii) Obtuse } \angle \mathrm{BOD}=2(45+25) \\ & \quad=140^{\circ} \\ & \text { (iii) } \angle \mathrm{ACB}=\angle \mathrm{BAC}=45^{\circ} \text { base } \\ & \angle \mathrm{ABE}=\angle \mathrm{ACB}=45^{\circ} \mathrm{S} \text { in all segment } \\ & \angle \mathrm{CBF}=\angle \mathrm{BAC}=45^{\circ} \mathrm{S} \text { in all segment } \\ & \therefore \angle \mathrm{ABE}=\angle C B F \end{aligned}$	M1 M1 A1 B1 B1 B1 B1 B1	Can be indicated on diagram Or BAD - 180(25 + 45) $110^{\circ} \mathrm{m} 1, \mathrm{~m} 1 \mathrm{~A} 1$ $140^{\circ} \mathrm{m} 1, \mathrm{~A} 1, \mathrm{Ow}-1$ Allow B1 to ABE - 450 - CBF Adequate reason

K.C.S.E 1997 MATHEMATICS PAPER 121/1 MARKING SCHEME

SOLUTION	MARKS	ALTERNATIVE
$\begin{aligned} X & =400 \cos 60^{\circ}=200 \mathrm{~m} \\ H & =200 \sin 60^{\circ} \\ H & =200 \times 0.8660 \\ & =173.2 \mathrm{~m} \end{aligned}$	B1 M1 $\frac{A 1}{3 \text { marks }}$	For sketch ALT. METHOD $\begin{aligned} & \operatorname{Tan} 30^{\circ}=\mathrm{h} \\ & 400-\mathrm{x} \\ & \mathrm{~h}=(400-\mathrm{x}) \tan 30^{\circ} \\ & \tan 60^{\circ}=\mathrm{h} \therefore \mathrm{~h}=\tan 60^{\circ} \\ & 1.732 \mathrm{x}=400 \times 0.5574-67774 \mathrm{x} \\ & \mathrm{x}=230.96 \\ & 2.3095 \\ & \mathrm{~h}=\frac{230}{96} \times 1.7301=113.2 \mathrm{~m} \end{aligned}$
6. Volume of the cone $\begin{aligned} & =1 / 3 \times 22 / 7 \times 7 \times 7 \times 18 \checkmark \\ & =924 \mathrm{~cm}^{3} \end{aligned}$ Let change in height be H Volume of water displaced $\begin{aligned} & =\frac{22}{7} \times 14 \times 14 \times H=616 \times \mathrm{m}^{2} \\ & \pi=14 \times 14 \times H=1 / 3 \pi \times 7 \times 7 \times 18 \\ & H=\frac{49 \times 6}{14 \times 14}=1.5 \mathrm{~V} \end{aligned}$	M1 M1 M1 A1 4 marks	
$\text { 7. } \begin{aligned} & C R=\frac{4000 \times 100}{42.000}=9.52 \\ & \text { Commission }=\frac{5}{3} \times \frac{58}{100} \times \frac{360.000}{100} \checkmark \\ & =\text { Sh. } 33586.5 \mathrm{~V} \end{aligned}$	B1 - 31 A1 3 marks	Accept 5891, 5891.80 When logs are used
8. (a) Mode $=934$ (b) Take any no $=a$ $a=934-9=925$ (ii) $\begin{aligned} & x=925+\frac{115}{20} \\ & x=930.75 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \frac{A 1}{3 \text { marks }} \end{aligned}$	
$\text { 9. } \begin{aligned} &\left(\begin{array}{ll} 1 & 3 \\ 5 & 3 \end{array}\right)\left(\begin{array}{ll} 3 & 1 \\ 5 & ,-1 \end{array}\right)=\underbrace{\left(\begin{array}{cc} 3 & 1 \\ 5 & -1 \end{array}\right)\left(\begin{array}{ll} p & 0 \\ 0 & q \end{array}\right)}_{M} \\ &\left(\begin{array}{cc} 18 & -2 \\ 30 & 2 \end{array}\right)=\left(\begin{array}{cc} 3 p & q \\ 5 p & -q \end{array}\right) p=6, q=-2 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & B 1 \\ & \frac{B 1}{3 \text { marks }} \end{aligned}$	
$\begin{aligned} & \text { 10. } \frac{d y}{d x}=3 a x^{2}-6 x-2 \\ & 3 a x^{2}-6 x-2=1 \\ & 3 a-6-2=7 \text { at } x=1 \\ & 3 a=15 \\ & a=5 \end{aligned}$	M1 M1 $\frac{\mathrm{A} 1}{3 \text { marks }}$	
$\begin{aligned} & \text { 11. } \sin 0=\frac{4}{5} \text { or }-0.8 \\ & 3^{\text {rd }} \text { Quadrant } 180+53.13=233.13 \\ & 4^{\text {th }} \text { Quadrant } 360-53.5=306.87 \end{aligned}$	B1 B1 B1 2 marks	

K.C.SE 1997 MATHEMATICS PAPER $121 / 2$ MARKING SCHEME

SOLUTION	MARKS	ALTERNATIVE
	M1 M1 2 marks	for \downarrow removal of decimal points or 0.032 and 0.0038 stated in standard form.
2. Let number of ten shillings coins be t \therefore number of five shillings coins $=2 \mathrm{t}$ Number of one shilling coins $\begin{aligned} & =21=3 \mathrm{t} \\ & \text { Value }=10 \mathrm{t}+2 \mathrm{t} \times 5+121-30 \times 1=72 \\ & =17 \mathrm{t}=51 \\ & \mathrm{t}=3 \end{aligned}$	B1 B1 M1 $\frac{\mathrm{A} 1}{4 \text { marks }}$	Let number of 5 - sh. coins be f Number of 10 -sh. coins be $1 / 2 f$ Number of 1 -sh. coins $211 / \frac{1}{} \mathrm{f}$ $\begin{aligned} & 1 / 2 \mathrm{fx} 10+5 \mathrm{ft}\left(21-1 \frac{1}{2} \mathrm{f}\right) \times 1=72 \\ & 17 \mathrm{f}=102 \\ & \mathrm{f}=6 \\ & \therefore \text { no of } 10 \text { sh: coins }=3 \mathrm{~A} 1 \end{aligned}$
3. No. of yens $\frac{30000}{0.5446}$ $=55086$	M1 $\frac{\mathrm{A} 1}{2 \text { marks }}$	Allow 55080 from tables
4. \checkmark Const. of 1 bisector of $B C$ \checkmark Const of 1 bisector of $A C$ or $A B$ Locus of P drawn	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & 3 \text { marks } \end{aligned}$	ce?
5. Area of the sector $=\frac{75^{\circ}}{360} \times \frac{22}{7} \times 14 \times 14$ $=128.3 \mathrm{~cm}$ Area of $\Delta=1 / 2 \times 14 \times 14 \operatorname{Sin} 75^{\circ}$ $=1 / 2 \times 14 \times 14 \times 0.9659$ $=(6,5)$ $=94.64 \mathrm{~cm}(94,66)$ Area of segment $=128.324 .64$ $=33.64$ or 133.68) LM	M1 M1 A1 4 marks	Simplified expression or equivalent Simplified on P Subtract at simplified numerical stage Stage and at least one area is correctly obtained.
6. Labeled sketch of the pyramid (dimensions may be implied) $\begin{aligned} & V N=10^{3}-3^{2}=109 \\ & =10.44 \mathrm{~cm} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline 3 \text { marks } \end{aligned}$	
$\text { 7. } \begin{aligned} & \left(\frac{1}{3}\right)^{\mathrm{m}} \times\left(3^{4}\right)^{-1}=3^{5} \\ & 3^{-\mathrm{m}}-4=3^{5} \\ & -\mathrm{m}=5+4=9 \\ & \mathrm{~m}=9 \end{aligned}$	M1 M1 A1 $\overline{3 \text { marks }}$	For equivalent in power of 3 at least one index Alternative method -in $\log 27-1 \times \log 81=\log 243$ -mx 1.4314.1.9085-23856 M1 $\begin{array}{rl} -\mathrm{m}=4.2941 & \mathrm{M} 1 \\ 1.4314 & \\ =-3.001 & \text { A1 } \end{array}$

SOLUTION	MARKS	ALTERNATIVE
8. $3.55 \pm 0.05,4.85 \pm 0.05,5.7,6.3,6.7 \& 6.9$ Area $=$ $\begin{aligned} & 1 / 2 \times 1(0+7+2(3.6=4.9+5.7+6.3+6.7+6.9) \\ & \quad=1 / 2117+68.20) \\ & =37.6 \end{aligned}$	B1 M1 M1 A1 \qquad	For any 4 middle ordinates interval of $1 / 2$ MR - 2 Use of formula all individual trapezia are for simplification of inner brackets in a trapezoidal rule Mid ordinate rule use MR - 2
9. $\begin{aligned} & (1-3 x)^{3}=1+5(-3 x)+10(-3 x)^{2}+10(-3 x)^{3} \\ & =1.15 x+90 x^{2}-270 \times 3+\ldots \ldots \\ & =3 x-0.03 \text { or } x=0.1 \\ & (0.97) 5=1-15(0.01)+90(0.01)-270(0.0) \\ & =1-0.15+0.009-0.00027 \\ & =0.85873 \\ & =0.8587 \text { to d.p } \end{aligned}$	M1 A1 B1 M1 $\frac{A 1}{5 \text { marks }}$	For complete expansion to the expansion accept only to $x 3$ incase of any (condone) error or $1+\left(5 \mathrm{t}-0.03 \mathrm{t}+10(0.03)^{2}+10(-\right.$ $0.03)^{3}$
10.Anyr drawn and labeled net of a net of a cuboid icondone net of a cube \checkmark path drawn All \checkmark directions (condone a net of cube a ward first) B1. Diff net 12 mm	B1 B1 B1 $\overline{3 \text { marks }}$	
11.(i) $\mathrm{AO}: \mathrm{OC}=4: 3$ allow $8: 6$ (ii) $Q C=\frac{3}{7} \times 14=6 \mathrm{~cm}$	$\begin{aligned} & \mathrm{B} 1 \\ & \frac{\mathrm{Bi}}{2 \text { marks }} \end{aligned}$	
$\text { 12. } \begin{aligned} & \frac{\sqrt{14}(\sqrt{7}+\sqrt{2}) \cdots \sqrt{14}(\sqrt{7}-\sqrt{3}}{(\sqrt{7}-\sqrt{2})(\sqrt{7}+\sqrt{2})} \\ &= \frac{\sqrt{7 \sqrt{2}+2 \sqrt{7}}-\sqrt{7} \cdot \sqrt{2}+2 \sqrt{7}}{7-2} \\ & \frac{4 \sqrt{7}}{5} \\ & \therefore a=\frac{4}{5} \\ & b=0 \end{aligned}$	$M 1$ $M 1$ $A 1$ $\frac{A 1}{4 \text { marks }}$	Single term or Write common 2 terms with: common denominator expansion of both numerator \& denominator
13. OUT OF SYLLABUS		
14. Let Onduso take x days \Rightarrow Mogaka takes $x+5$ days $\therefore \frac{1}{x}+\frac{1}{x+5}=\frac{1}{6}$ $6(x+5)+6 x=x(x+5)$ $\begin{aligned} & x^{3}-7 x-30=0 \\ & (x-10)=x+3) \\ & x=10.3 \end{aligned}$ \therefore Onduso takes 10 days	M1 M1 M1 A1 4 marks	Or equivalent \checkmark equivalent (removal of ali denominators) Equivalent for factorization or use of formula

SOLUTION					ALTERNATIVE					
$\begin{aligned} & \text { 15. } \text { Speed of slower athlete }=\frac{800}{108} \\ & \quad \therefore \text { Distance }=\frac{800}{108} \times 4 \\ & \quad=29.63 \end{aligned}$					Slower speed $\frac{800}{108}$ Distance $=\frac{800 \times 104}{108}$ R. $V=\frac{800}{104}-\frac{800}{108}$ $=0.2849$ \therefore Dis $=0.2849 \times 104=29.63$					
$\text { 16. (i) Area of Equi. } \begin{aligned} \Delta & =1 / 2 \times 6 \times 6 \times \operatorname{Sin} 60^{\circ} \\ & =1 / 2 \times 6 \times 6 \times 0.8669 \\ & =15.588(15.59) \\ \text {-section } & \text { Area }=1 / 2 \times 6 \times 6 \times 0.8660 \times 6 \\ & =15.59 \times 6 \\ & =93.54(93.528) \end{aligned}$ (ii) Vol. of prism $=93.54 \times 30$ $=2806.2(2805.9)$			M1 M1 A1 M1 A1 5 m	arks						
17. (a) $\begin{aligned} & \text { (i) Voi }=135 \times 0.15=20.25 \mathrm{~m}^{3} \\ & \text { (ii) mass }=2500 \times 20.25 \\ & =50625 \mathrm{~kg}(50630) \\ & =\text { mass of cement }=50625 \times \frac{1}{9} \end{aligned}$ (b) Bags of cement $=\frac{5625}{50}=112.5$ (c) No of lorries of sand $\frac{5062 \mathrm{~F}}{7000} \times \frac{4}{9}$ $\begin{aligned} & =3.214 \\ & =4 \text { lorries } \end{aligned}$			$B 1$ B1 M1 A1 $M 1$ S M $M 1$ $M 1$ 8 marks		Forevaluation					
x	30	$60 \mid 90$ - $0^{9} 120$	150	180	210	240	270	300	330	360
$\operatorname{Cos} x$	0.87		-0.87	-1.0	-0.87	-0.5	0	0.5	0.87	1.0
$2 \cos 1 / 2 x$	1.93	1.73 l 1.41 1.0	0.52	${ }^{\text {a }}$ B1	0.52	-1.00	1.41	1.73	1.93	-2.00
coser row $2 \cos 1 / 2 \times$ row Graph of $\cos x^{4}$ Graph of $2 \cos 1 / 2 \times \checkmark$ For any error in fitting Table the graph drawn should have <that 2 points out B1 \checkmark Period $=720^{\circ}$ Ambitute $=2$ Enlargement of 2 about centre $(0,0)$			B1 B1 B1 B1 B1 B1 8 m		(\checkmark) all points must be correctly B1V plotted using given scale Apply Ow - 1 if scale not used.					

Cumulative frequencies (a) Linear scale used Plotting d against upper class limit Complete of d curve drawn (b) (i) median $=29.5$ (ii) Reading at mass 25.28 $=11$ and 20 Probability $=\frac{20}{5}-\frac{11}{0}=0.8$	B1 S1 P1 C1 B1 B1 $\frac{A 1}{8 \text { marks }}$	Must accommodate all data (allow reading of varied scale) (\checkmark)Allow curves from a against midpoints lower class limits upper class limits boundaries. (\checkmark) Accept reading at $d=25.0$ or $25^{1 / 2}$ within 1 small square. (\checkmark) Allow the two V s above for reading from d curves.
23. (a) Bearing of $060^{\circ} \checkmark$ drawn Bearing of $210^{\circ} \mathrm{V}$ drawn Distance on scale drawing representing 1500 km Representing 1800 km (b) (i) Actual distance $(16 \pm 0.1) \times 200$ or equivalent $=3200 \mathrm{~km}$ (ii) Bearing of T from S $=224^{\circ} \pm 1^{\circ}$ (iii) Bearing of S from T $=044^{\circ} \pm 1^{\circ}$	B1 B1 B1 B1 M1 A1 B1 B1 8 marks	Apply \checkmark if S or T is correctly located
24.(a) $a+b, a+8 d, a+24 d$ (b) $\begin{aligned} & \text { (i) } \frac{a+8 d}{a+2 d}=\frac{a+24 d}{a+8 d} \\ & a^{2}+16 a d+64 d^{2}=a^{2}+26 a d+48 d^{2} \\ & 16 d^{2}=10 a d, \\ & d(16 d-10 a)=0 \\ & \Rightarrow d=5 a \\ & 2(a+5 d)+(a+6 d)-78 \\ & 3 a+16 \times \frac{5 a}{8}=78 \\ & 13 a=78 \\ & \Rightarrow a=6 \\ & d=\frac{5}{8} \times 6=3.75 \end{aligned}$ $\text { (ii) } S 9=\frac{9}{2}\left(2 \times 6+(9-1) \frac{15}{4}\right)$ $=\frac{9}{2} \times 42$ $=189$	B1 M1 M1 M1 M1 A1 M1 M1 A1 8 marks	All the 3 terms written. Allow the terms in the form $a+(n-1) d$ Condone 16d = 10a For the formation of equ in one variable \checkmark only from an error numerical either a list

K.C.SE 1998 MATHEMATICS PAPER 121/1 MARKING SCHEME

SOLUTION	MARKS	ALTERNATIVE
$\text { 1. } \begin{aligned} & 1000 \sqrt{\frac{0.0064}{100}} \\ & =1000=\frac{(0.08)}{10} \\ & 1000 \times 0.008 \\ & =8 \mathrm{~V} \end{aligned}$	M1 $\frac{\mathrm{A} 1}{2 \text { marks }}$	
$\text { 2. } \begin{aligned} & (a+b)(a-b) \\ & (2557+2547)(2557-2547) \\ & 5104 \times 10=51040 \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline 3 \text { marks } \\ & \hline \end{aligned}$	
3. $\begin{align*} & 6 a+4 b=72 \ldots \ldots \ldots . . \text { (i) } \\ & 2 a+3 b=3.4 \ldots \ldots \ldots(\text { ii) } \tag{ii}\\ & 6 a+4 b=7.2 \\ & 6 a+9 b=10.2 \\ & 5 b=-3 v \\ & b=\frac{3}{5} \therefore 6 a+\frac{4 \times 3}{5}=7.2 \\ & 6 a=4.8 \\ & A=0.8 \end{align*}$	M1 M1	Forming inequalities Eliminating one variable Both answers correct
4. (a) $\angle \mathrm{CDF}:=110^{\circ}-60^{\circ}=50^{\circ}$ (b) $\angle \mathrm{ABD}=\angle \mathrm{BDE}=25^{\circ}$ Both reasoning give. and bothes reasoning given wrong - owepr One reason given (right opwrong) ow - 1 r	$\text { B1 } \quad 1 \mathrm{~F}$ 3 marks	Sum of two interior opposite angles add up to exterior angle. ALT. METHOD $(180-(60+(180-110)=(180-130)$ (AO)
$\begin{aligned} & \text { 5. Commission }=\frac{2.4}{100} \times 100,0009 \frac{3.9}{100} \times 180,000 \\ & 2400+70.20 \\ & \text { Sh. } 5100=\text { Sh. } 9420 \end{aligned}$	M1	
6. $\operatorname{Tan} 30^{\circ}=\frac{\mathrm{h}}{15}$ $\begin{aligned} & h=15 \tan 30^{\circ} \\ & h=15 \times 0.5773502 \\ & =8.660254 \\ & h=8.611 \end{aligned}$ (b) $10.503-8.661=1.842$	B1 B1 B1 3 marks	(Accept 8.66, 8.662) if log used (Accept 1.841)

SOLUTION	MARKS	ALTERNATIVE
$\begin{aligned} & \text { 7. }\left[\begin{array}{ll} x & 0 \\ 5 & y \end{array}\right]\left[\begin{array}{ll} x & 0 \\ 5 & y \end{array}\right] \\ & {\left[\begin{array}{cc} x^{2} & 0 \\ 5 x+5 y & y^{2} \end{array}\right]} \\ & {\left[\begin{array}{ccc} x^{2} & 0 \\ 5 x+5 y & y^{2} \end{array}\right]=\left[\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right] \quad 1 \text { if } x 1, y=-1} \\ & \text { if } x=-1, y=1 \\ & \text { then } x=1, y=-1 \\ & x=-1, y=1 \end{aligned}$	B1 B1 M1 A1 4 marks	
$\text { 8. } \begin{aligned} & \log y=\log \left(10 x^{n}\right) \\ & =\log y=\log 10+n \log x \\ & n \log x=\log y-\log 10 \\ & n=\frac{\log y-\log 10}{\log x} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & M 1 \\ & \frac{A 1}{3 \text { marks }} \end{aligned}$	\qquad
9. $\begin{aligned} & T=a+b \sqrt{S} \text { or } T=b+a \sqrt{S} \checkmark \\ & a+b \sqrt{16}=24 \\ & a+b \sqrt{36}=32 \checkmark \\ & \\ & a+4 b=24 \\ & \begin{array}{ll} a+6 b=32 \checkmark & 2 d=-20 \\ -2 b=-8 & a+2(-10)=10 \\ b=4 & a=30 \checkmark \end{array} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \frac{\text { A1 }}{4 \text { marks }} \end{aligned}$	Both answers correct
$\begin{aligned} & 10 . \mathrm{S}_{14}=\frac{15}{2}(2 \mathrm{x}+(\mathrm{n}-1) \mathrm{d} \\ & \quad=\frac{15}{2}(2 \times 30)+(14 \times-10) \mathrm{r} \\ & \frac{15}{2}(60-140) \\ & \quad=600 \checkmark \end{aligned}$	M1 A1 $\frac{\mathrm{A} 1}{3 \text { marks }}$	$\begin{array}{rlr} a, a+d, a+3 d, a+d, a+2 r-10=10 \\ a+2 d=10 & a=30 \\ a+4 d=10 & m 1 \\ -2 d=20 & \\ d=10 & \\ 1 \text { st } \tan =30 & d=-10 \end{array}$
$\text { 11. Volume }=\Pi r^{2} h=\Pi 15 \times 1.2 \mathrm{c}$ 270ПV (b) $\begin{aligned} & 1 / 3 \pi \times r \times 9=270 \pi \\ & r^{2}=\frac{270 \times 3}{9}=90^{0} \\ & r=\sqrt{90}=9.49 r \end{aligned}$	M1 A1 M1 A1	
12.Cum. Freq 3113044 50V $\begin{align*} & M=\frac{\mathrm{Li}+\left(\frac{n}{2}-c f a\right) \mathrm{i}}{f_{\mathrm{m}}} \\ & 8+\frac{25-11)}{19} \times 4=10.947 \mathrm{~V} \tag{A1} \end{align*}$	B1 $\frac{A 1}{3 \text { marks }}$	$\begin{array}{ll} \mathrm{mdn}=\mathrm{L}+\frac{\left(\mathrm{n}-\mathrm{i}-\mathrm{fc}_{\mathrm{c}}\right) \mathrm{i}}{\mathrm{f}_{\mathrm{mi}}} & \\ 7.5+\frac{(255-11)}{19} \times 4 & \mathrm{~m} 1 \\ =10.553 & \mathrm{~A} 1 \end{array}$
$\begin{aligned} & 13.1600 \frac{(1+\mathrm{r})^{2}}{100}=25,000 \checkmark \\ & \frac{(1+\mathrm{r})^{2}}{100}=\frac{25000}{16000} \\ & 1+\frac{r}{100}=\sqrt{1.5625}=1.25 \checkmark \\ & \frac{r}{1000}=0.25 \checkmark \\ & r=25 \% \end{aligned}$	M1 M1 M1 M1 4 marks	$\begin{aligned} & \frac{25}{16}=1+\frac{2 \mathrm{R}}{100}+\frac{\mathrm{R} 2}{10,000} \\ & 16 \mathrm{r} 2+13200 \mathrm{r}+90,000=0 \\ & \mathrm{r} 2+200 \mathrm{r} 1 \\ & \mathrm{r}=\frac{200}{2}+25625=0 \quad \mathrm{~m} 1 \\ & r=\frac{50}{2}=25 \% \end{aligned}$
$\begin{aligned} & \text { 14. } \operatorname{Cos}\left(30 \theta+120^{\circ}\right)-\frac{1.731}{2}=0.8660 \\ & 3 \theta+120^{\circ}=390^{\circ} \Rightarrow 3 \theta+120=330 \checkmark \\ & 3 \theta=20 \quad 3 \theta=210 \checkmark \\ & \theta=90 \checkmark \quad \theta=70^{\circ} \mathrm{V} \end{aligned}$	B1 B1 B1 A1 4 marks	Both answers correct

SOLUTION	MARKS	ALTERNATIVE
$\begin{gathered} 15 . C=2 \times 2.8 \times \frac{22}{7}=17.6 \mathrm{~cm} \\ =\frac{c}{\pi}=17.6 \times \frac{7}{22}=5.6 \checkmark \\ 3.142 \times 2.8 \times 2=17.595 \\ 3.142 \times 5.5=17.281 \checkmark \\ 3.142 \times 5.7=19.909 \\ \text { Limits: } 17.28+17.91 \checkmark \end{gathered}$	M1 M1 $\frac{A 1}{2 \text { marks }}$	Working limit Lowe limit Upper limit 17.27-17.91 logs used
16.		
Distance covered by Bus A at 10 a.m $=90 \times 2=180 \mathrm{~km}$ Bus B Time between 2 stops $=72=1.2 \mathrm{hrs}(1 \mathrm{hr} 12 \mathrm{~min})$ Bus B leaves L at 9.17 a.m Distance between 9.17-10 a.m = $60 \times \frac{43}{60}=43 \mathrm{~km}$ At 10 a.m bus B has covered $(72+43)=115 \mathrm{~km}$ Distance between bus A and B at 10 $a \cdot m=360-(180+115)=65 \mathrm{~km}$	B1 B1 B1 8 marks	
17. $\begin{gathered} \text { (a) } \frac{3.5}{100} \times 50=1.75 \\ 4.75 \times 30=1.425 \checkmark \\ \text { Total }=3.175 \mathrm{~kg} \\ 3.175 \times 100=3.9688 \checkmark \\ 3.969 \checkmark \end{gathered}$ No of fat $\mathrm{kg}=\frac{\mathrm{x}}{50} \times 100=4$ $\begin{aligned} & x=2 \mathrm{~kg} \text { fat } \\ & \mathrm{Kg} \text { of } \mathrm{A} \frac{3.5 y}{100}+4.75 \frac{(x 50-y)}{100}=2 \\ & (50-y) \mathrm{Kg} \text { of } \mathrm{B} \cdot 3 \mathrm{yy}+237.5-4.75 \mathrm{y}=200 \\ & \quad 1.25=37.5 \\ & y=\frac{37.5}{1.25} \\ & y=30 \\ & \mathrm{a}=30 \mathrm{~kg} \\ & \mathrm{~b}=20 \mathrm{~kg} \\ & \mathrm{~B} \geq 20 \mathrm{~kg} \end{aligned}$	M1 A1 M1 A1 M1 M1 B1 B1 8 marks	
18. (a) Taxable pay $\frac{20,000}{20} \times \frac{115}{100}-\frac{700}{20} \checkmark$ $\begin{aligned} & 1000 \times \frac{115}{100}-35 \checkmark \\ & 1150-35=£ 1115 \end{aligned}$ Taxable income $\begin{gathered} 342 \times 2+342 \times 3+342+89 \times 5 \\ 684+1026+1368+445-600 \\ 3523-600=\text { Sh. } 2923 \\ \text { Net tax }=35.23-600 \\ \text { Sh. } 2923(£ 146.15) \\ \hline \end{gathered}$	M1 M1 M1 M1 ;1 A1 $\frac{\mathrm{B} 1}{8 \text { marks }}$	M1 must mult. By 89

SOLUTION	MARKS	ALTERNATIVE
19. (B) $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{cccc}4 & 2 & 6 & 4 \\ -4 & -2 & -6 & 12\end{array}\right]=\left[\begin{array}{llll}4 & 4 & 2 & 2 \\ 4 & 2 & 6 & 4\end{array}\right]$ $A^{\prime}(4,4) \quad B^{\prime}(4,2) \quad C^{\prime}(6,6) \quad D^{\prime}(2,4)$ $\begin{aligned} & C(i) \\ & {\left[\begin{array}{cc} 1 & -2 \\ 0 & 1 \end{array}\right]\left[\begin{array}{llll} 4 & 4 & 2 & 2 \\ 4 & 2 & 6 & 4 \end{array}\right]=\left[\begin{array}{cccc} -4 & 0 & -10 & -6 \\ 4 & 2 & 6 & 4 \end{array}\right]} \\ & A^{\prime \prime}(-4,4), B^{\prime \prime}(0,2) C^{\prime \prime}(-6,6) D^{\prime \prime}(-6,4) \end{aligned}$ d) $\left[\begin{array}{cc} 1 & -2 \\ 0 & 1 \end{array}\right]\left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right]=\left[\begin{array}{cc} -2 & -1 \\ 1 & 0 \end{array}\right]$	31 M1 A1 Ni 1 A1 2 marks	
20.Longitudinal difference $70-10=60^{\circ}$ (i) Distance between x and y $\begin{aligned} & \frac{60}{360} \times \frac{22}{7} \times 2 \times 6371 \cos 45^{\circ} \\ & \frac{1}{6} \times \frac{22}{7} \times 2 \times 6371 \times 0.7071=4.719 \mathrm{~km} \end{aligned}$ (ii) Distance between x and y $\frac{4919.45}{1.85}=2551.05 \mathrm{~mm}$ (c) Time diff $=60 \times 4=240 \mathrm{~min}=4 \mathrm{hrs}$ Local time at $x=\$ 0.00 \mathrm{am}$	B1 M1 A1 B1 BI 8 marks	(Accept 4719, 4720, 4715)
21.(a) Are of the circular based $\frac{22}{7} \times 3.5 \times 3.5=38.5$ (b) Area of the curved S.A $\frac{22}{7} \times 2 \times 3.5 \times 20=440 \mathrm{~cm}^{2} \checkmark$ (c) $\begin{aligned} & 4 / 3 \pi r^{2}=2 / 3 \times 224 \times 3.5^{2} \checkmark \\ & 44 \times 0.5 \times 35^{6} \\ & 22 \times 3.5=77 \mathrm{~cm}^{2} \checkmark \end{aligned}$ (d) $38.5+440+77=555.5 \mathrm{~cm}^{2} \checkmark$	A 1 M1 A1 M1 A1 M1 M1 A1 8 marks	
22. (a) (i) $a+b v$ (ii) $A D=A B+B D$ $a+\frac{(-2) b}{3}$ $a-\frac{2 a}{3} \downarrow$ (b) $\begin{aligned} & \frac{-2}{3} A D+\frac{(-4 H)}{3} \checkmark \\ & 2 / 3\left(a-\frac{2 b}{3}+\frac{-4 b}{3}\right) \\ & \frac{2 a}{3}-\frac{4 b}{9}-\frac{4 b}{3} \\ & \frac{-2 a}{3}-\frac{8 a}{9}=\frac{2}{3}\left(-a-\frac{4 b}{3}\right) v \end{aligned}$	B1 M1 A1 M1 A1	

$\text { (c) } \begin{aligned} & \overrightarrow{\mathrm{PR}}=\frac{1 \mathrm{~b}}{9}-\frac{8 \mathrm{a}}{3} \\ & \overrightarrow{\mathrm{px}}=\mathrm{K} \frac{(1 \mathrm{~b}}{9}-\frac{8 \mathrm{a})}{3} \\ & \overrightarrow{\mathrm{BX}}=\mathrm{h}(-\mathrm{a})=\mathrm{ha} \\ & \mathrm{BX}=\frac{-2 \mathrm{a}}{3}-\frac{8 \mathrm{~b}}{9}+\mathrm{K} \frac{(1 \mathrm{~b}}{9}-\frac{8 \mathrm{a})}{3} \\ & =2 \mathrm{a}+\frac{\mathrm{KBa}}{3}-\frac{8 \mathrm{~b}}{3}+\frac{1 \mathrm{~kb}}{9} \\ & =\frac{(-2}{3}-\frac{-8 \mathrm{k})}{3} \mathrm{a}+\frac{(8}{9}+\frac{1 \mathrm{k})}{9} \mathrm{~b} \\ & -\mathrm{h}=\frac{2}{9}+\frac{8 \mathrm{k}}{3} \\ & \frac{-8}{9}+\frac{1 \mathrm{k}}{9}=0 \\ & \frac{1 \mathrm{k}}{9}=\frac{8}{9} \\ & \mathrm{~K}=8 \\ & +\mathrm{h}=\frac{+2}{3}+\frac{8 \mathrm{x}}{9} \mathrm{k} \\ & =\frac{+2}{3}+64=\frac{66}{3} \\ & H=6 * \mathrm{~h}=22 \\ & \mathrm{PX}=8 \frac{(1 \mathrm{~b}}{9}-\frac{8 \mathrm{ab}}{3}=\frac{8 \mathrm{~b}}{9}-\frac{64 \mathrm{a}}{3} \\ & \mathrm{PR}: \mathrm{RX}=1: 7 \end{aligned}$	M1 M1 A1 8 marks	$\begin{aligned} & P X=\frac{1 b}{9}-\frac{1 a}{3} \\ & \frac{(8 b}{9}-\frac{64 a)}{3}-\frac{(1 b}{9}-\frac{1 a)}{3}=\frac{7 b}{9}-\frac{56 a}{3} \\ & =7(1 b-81) C P R: R X=1: 7 \end{aligned}$
$23 . C D=5.4 \mathrm{~cm}$ Not to scale Line parallel to $B C$ and 4.5 away from it $\begin{aligned} & B C=5 \mathrm{~cm} \\ & A D=6 \mathrm{~cm} \\ & \frac{3}{4} \times 6=4.5 \end{aligned}$ (c) Location of A^{\prime} line paratiel to $B C$ and 4.5 cm away frem BC	B1 B1 \qquad	x const of $20^{\circ} \mathrm{B1}$ (Check for const marks) x Length of $A B$ Completed $A B C$ Const of 1 from A to $B C$ produced ${ }^{*}$ Length $C D=5.4+0.1-\mathrm{B} 1(60)$ *Location of A1 $\left(\mathrm{DA}=4.5\right.$ or $A A^{1}=1.5$ X location of $A 1$ Line thro' A^{\prime} parallel To BC accept equivalent statement
24.(a) (i) Treated with the drug $\frac{20}{36}=\frac{5}{9}$ (ii) treated with the drug $\frac{16}{36}=\frac{4}{9}$ 1 mark (b) (i) treated with the drug and will die $\frac{5}{9} \times \frac{1}{10}=\frac{5}{90}=\frac{1}{18} \quad 2 \mathrm{marks}$ (ii) $\frac{4}{9} \times \frac{1}{10}=\frac{28}{90}=\frac{14}{45}$ 2 marks (iii) $\frac{4}{9} \times \frac{3}{10}=\frac{12}{90}=\frac{6}{45}=\frac{2}{15}$ 2 marks	B1 B1 A1 B1 A1 $-81 \quad \mathrm{~A} 1$	

K.C.SE 1998 MATHEMATICS PAPER 121/2 MARKING SCHEME

SOLUTION	MARKS	ALTERNATIVE
1.	M1 M1 $\frac{\mathrm{A} 1}{4 \text { marks }}$	All three logs \checkmark \checkmark attempt to divide by 5
$\text { 2. } \begin{aligned} & \frac{3(x-1)-(2 x+1)}{3 x}=\frac{(3 x-3-2 x-1)}{3 x} \\ &==\frac{x-4}{3 x} \\ & \frac{x-4}{3 x}=\frac{2}{3} \\ & 3 x-12=6 x \\ & x=4 \end{aligned}$	$\begin{array}{\|l} \hline \text { B1 } \\ \text { M1 } \\ \frac{A 1}{3 \text { marks }} \\ \hline \end{array}$	Equating \& removal of den
$\text { 3. } \begin{aligned} & \frac{\sqrt{14}+2 \sqrt{3}-\sqrt{14}-2 \sqrt{3}}{(14) 2-(23) 2}=\frac{4 \sqrt{3}}{2} \\ & \quad=2 \sqrt{3} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \frac{A 1}{2 \text { marks }} \\ & \hline \end{aligned}$	Single term with denominates expanded
4. (a) $A C=\sqrt{4^{2}+\frac{(4 \sqrt{3})^{2}}{3}}=\sqrt{16+\frac{16}{3}}=\sqrt{\frac{64}{3}}$ $\frac{3}{\sqrt{3}}$ or 4.618 (b) $\begin{aligned} & B C=\frac{4.613}{\tan 30}=\frac{4.618}{0.5774} \\ & =8 \checkmark \end{aligned}$	$\mathrm{M1}$ Al M 1 3 marks	$\frac{8}{\sqrt{3}} \div \frac{1}{\sqrt{3}}$ if A is lost
$\text { 5. } \begin{aligned} 1995 \text { value } & =50,000 \times 1.2 \mathrm{v} \\ & =60,000 \\ 1997 \text { value } & -60,000 \text { रु }{ }^{2}(1.1)^{3} \mathrm{v} \\ & =798608 \end{aligned}$	$\begin{array}{\|ll} \hline \text { A1 } \\ \text { B1 } \\ \text { M1 A1 } \\ \hline 3 \text { marks } \end{array}$	(7,996, 7,997, 7,998, 7,999)
	M1 M1 M1 A1 4 marks	Allow Sh. 505,100
7. Trade B.P $=\frac{84}{120} \times 100 \checkmark$ $=70 \mathrm{~V}$ (b) Cost of manufacturers $=70 \times \frac{100}{140}=50 \mathrm{~V}$	M1 A1 $\frac{B 1}{3 \text { marks }}$	
8. (a) \checkmark Const of 1 bisector of $A B$ (b) \checkmark Const of 1 bisector of $A C$ or $B C$ $\text { Or } \angle O A B=12^{\circ} \pm 1^{\circ}$ Or $\angle O B A=12^{\circ} \pm 1^{\circ}$ Drawn \checkmark position of P on $X Y$ of $A B$	B $1 / 3$ B1 $\frac{\mathrm{B} 1}{3 \text { marks }}$	Points P and O must be on opposite sides
$\text { 9. } \begin{aligned} & 3 v-u=w+v \\ & 2 u=w+v \end{aligned}$	M1 A1 2 marks	*if its $3 v+u=v+w$ without evidence M1A1OW -1 vector egn. Or equivalent

\begin{tabular}{|c|c|c|}
\hline SOLUTION \& MARKS \& ALTERNATIVE \\
\hline \[
\begin{aligned}
\& 10.3 p^{2}+2 / 3 p=1 \\
\& =p^{2}+2 p-3=0 \\
\& \quad(p-1)(p+3)=0 \\
\& \Rightarrow p=10 \quad p=3 \\
\& \therefore 31 / 2 \\
\& \Rightarrow y=0
\end{aligned}
\] \& \begin{tabular}{l}
\(\because\) \\
M1 \\
A1
\[
\frac{\mathrm{B} 1}{4 \text { marks }}
\]
\end{tabular} \& or equivalent at lost if all values given \\
\hline \[
\begin{aligned}
\& \text { 11. Initial volume }=\frac{4}{3 \pi r^{3}} \times 2^{3}=\frac{3211}{3} \\
\& \begin{aligned}
\text { New vol } \& =32 \Pi \times 337.5 \\
\& =36 \Pi
\end{aligned}
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{M} 1 \\
\& \mathrm{M} 1 \\
\& \hline 2 \text { marks }
\end{aligned}
\] \& \\
\hline \[
\begin{aligned}
\& \text { 12. } \log 1 / 125^{x^{2}}=\log 1 / 125 \\
\& 1 / 125^{2}=1 / 125 \\
\& x^{2}=1 \\
\& x=1
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
M1
\[
\mathrm{A} 1
\] \\
3 marks
\end{tabular} \& \begin{tabular}{l}
For single logs for both sides \\
For dropping logs must cenvert 3 logs 5 or \(\log 1 / 125\) \\
M1 for solving \(x\) condone \(x \pm 1\) for A1
\end{tabular} \\
\hline \[
\text { 13. } \begin{aligned}
\& 1+6 \times 15^{2}+15 x^{2}+20 x^{2}+6 x^{5}+x^{6} \checkmark \\
\& 1+6(0.03)+15(0.03)^{2}+20(0.03)^{3} \checkmark \\
\& =1+0.18+0.135+0.0054 \\
\& =1.19404 \\
\& =1.194 \checkmark
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
3 marks
\end{tabular} \& Accept desceading powers of \(x\) Allow more than 3 terms if used and if used and follow thro' \\
\hline \[
\begin{aligned}
\& \text { 14. (a) P(all boys) }=5 / 12 \times 4 / 11 \times 3 / 10 \\
\& =1 / 77 \\
\& \text { (b) }(2 \text { girls })=\frac{5}{12} \times \frac{6}{10} \times \frac{7}{12} \times \frac{5}{11} \times \frac{6}{10} \times \frac{7}{12} \times \frac{6}{11} \times \frac{5}{10} \\
\& =\frac{21}{44}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
4 marks
\end{tabular} \& \\
\hline 15. \(\cos \theta=\frac{6}{10}=0.6000\) \(0=53^{\circ} 8^{3}\left(53.13^{\circ}\right)\) \& \begin{tabular}{l}
B1 \\
M1 \\
2 marks
\end{tabular} \& For identification of the angle it may be implied \\
\hline \begin{tabular}{l}
16.
\[
\begin{aligned}
\& \text { (a) } \mathrm{BN}^{2}=10^{2}-5^{2}=75 \\
\& \Rightarrow \mathrm{BN}=8.65 \\
\& \mathrm{EN}^{2}=5^{2}+12^{2}=169 \\
\& \Rightarrow \mathrm{EN}=13
\end{aligned}
\] \\
(b)
\[
\begin{aligned}
\& \operatorname{Tan} \alpha=\frac{8.65}{13}=0.6662 \\
\& \alpha=33^{\circ} 40(\mathrm{i}) \quad\left(33.67^{\circ}\right)
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
M1
\[
\frac{\mathrm{A} 1}{4 \text { marks }}
\]
\end{tabular} \& \\
\hline \begin{tabular}{l}
\[
\begin{aligned}
\text { 17. (a) } \mathrm{Vol} \& =\frac{22}{7} \times 3.5 \times 2.8=107.8 \\
\text { Capacity } \& =\frac{22}{7} \times 3.5 \times 3.5 \times 2.8 \times 100=107800
\end{aligned}
\] \\
(b) Water used per day
\[
=6 \times 15+80+60=230
\] \\
No of days \(=\frac{107800}{230}=468.7\) \\
Complete days \(=468\) \\
Water saved in 90 days
\[
\begin{aligned}
=2 \times 15 \times 90 \& +\frac{20}{100} \times 60 \times 90 \\
2700+1080 \& =3780 \text { litre } \\
\text { No of extra days } \& =\frac{3780}{230}=16.43 \\
\text { Total no of days } \& =468.5+16.43 \\
\& =485.13 \\
\text { Complete days } \& =485
\end{aligned}
\]
\end{tabular} \& M1
A1

A1 \& | Conversion to litres |
| :--- |
| (\checkmark) All M but AO |
| Water used in 90 days $\begin{aligned} & 9014 \times 15 \times \frac{80}{100} \times 60 \times 80 \\ & =90 \times 100=16920 \\ & \text { Water rem }=107800-16=90880 \\ & \text { Total days }=90+\frac{908}{23} \\ & =90+395.13=485 \\ & 0.7 \times 107800 \\ & 4 \\ & \frac{3780}{230}+160=17.13 \\ & 468+17.3 \text { C.a.o } \end{aligned}$ |

\hline
\end{tabular}

K.C.SE 1999 MATHEMATICS PAPER 121/1 MARKING SCHEME

SOLUTION	MARKS	ALTERNATIVE
9. (a) Maximum possible area $4.11 \times 2.21=9.083$ Minimum possible area $4.09 \times 2.19=8.9571$ (b) Maximum possible wastage $9.083-8.9571=0.126 \mathrm{~m}^{2}$	M1 A1 B1 3 marks	$\begin{aligned} & 4.11 \times 2.21 \text { and } \\ & 4.09 \times 2.19 \\ & 9.0531 \text { and } 8.9571 \\ & 9.082 \\ & 8.956 \\ & 8.957 \\ & \hline \end{aligned}$
10.(a) by 30th June, 1996 $\begin{aligned} & A=12000 \times 1.09 \\ & =\text { Sh. } 13080 \end{aligned}$ (b) By 30th June 1997 $\begin{aligned} & A=12000 \times 1.09+12000 \times 1.092 \\ & =13080+14257.20 \\ & =\text { Sh. } 27337.20 \end{aligned}$	B1 M1 M1 3 marks	(Use of tables) Accept 27330, 27340 $1^{\text {st }} \mathrm{m} 1$ for 12000×1.092 $2^{\text {nd }} \mathrm{m} 1$ for $12000 \times 1.09=13080$ $13080+12000=25,080 \mathrm{~m} 1 \mathrm{~m} 1$ $20,080 \times 1.09=27337$ A1
11. Construction marks for $371 / 2$ $\angle A B C=37^{1 / 2^{\circ}} \pm 1^{\circ}$ Subdivision of $A B$ Subdivision of BC (ruler and set square) for parallel lines		$\begin{aligned} & * 60^{\circ}, 30^{\circ}, 1^{\circ}, 7112^{\circ} \\ & 3^{\circ} 60^{\circ}, 150^{\circ}, 75^{\circ}, 3712^{\circ} \\ & 0^{*} 90^{\circ}, 45^{\circ}, 60^{\circ}, 15^{\circ}, 71 / 2^{\circ} \end{aligned}$
$\begin{aligned} \text { 12. } \angle A B C & =180^{\circ}-117^{\circ}=63^{\circ} \\ \angle A C B & =90^{\circ} \\ \angle B A C & =90^{\circ}-63^{\circ}=27^{\circ} \end{aligned}$	B1 B1 B1 3 marks	Opposite <S cyclic quadrilateral Angle in semicircle $\triangle A B C$ right angled Ow - 1 if at least 1 reason mission or wrong for $90 \& 63^{\circ}$ only.
13. Length of the pipe $\begin{aligned} & \frac{63}{7000}=(0.15 \times 0.12 \times 0.120 \times 0.1) \\ & =0.009 \div 0.006 \\ & =1.5 \mathrm{~m} \end{aligned}$	M1 M1 M1 $\frac{\mathrm{A} 1}{4 \text { marks }}$	For volume (or equivalent For x -section area For the operations Accept cm unit used all through
14. (for tangent f height of $\triangle A B C$ $\begin{aligned} & =x \sqrt{3} \\ & =\tan ^{-1} \frac{x}{x \sqrt{3}} \\ & =\tan ^{-1} \frac{1}{x \sqrt{3}} \\ & =30^{\circ} \end{aligned}$	M1 M1 A 1 3 marks	$\begin{aligned} & \operatorname{Sin} \theta=\frac{x}{2 x}=\frac{1}{2} \text { for } \frac{\sin \varsigma}{2 x} x \sqrt{5} \quad \mathrm{~m} 1 \\ & =30^{\circ} \\ & \operatorname{Cos} \theta=\frac{x \sqrt{3}}{2 x}=30^{\circ} \\ & \text { For } 2 x, x \sqrt{3}=30^{\circ} \end{aligned}$
$\begin{aligned} 15 . & (x+y)^{2}+(y-x)^{2}-2(x-y)(x+y) \\ & =x^{2}+2 x y+y^{2}+y^{2}-2 x y+x^{2}+2 x^{2}+2 y^{2} \\ & =2 x^{2}+2 y^{2}-2 x^{2}+2 y^{2} \\ & =4 y^{2} \\ & =22(2-a)^{2} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \text { M1 } \\ & \frac{\mathrm{A} 1}{3 \text { marks }} \end{aligned}$	Substitution Expansion of the sum Expansion of the difference Expansion of two squares Removal of bracket Accept 4(2-a) ${ }^{2}$
$\begin{aligned} & \text { 16.V }=3 \mathrm{t}^{2}-6 \mathrm{t}-8 \\ & \mathrm{~S}=\zeta \mathrm{vdv} \\ &=\mathrm{t}^{3}-3 \mathrm{t}^{2}-8 \mathrm{t}+\mathrm{c}=10 \\ & \mathrm{~S}=1-3-8 \mathrm{tc}=10 \\ & \mathrm{C}=20 \\ & 8-12-16+20=0 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline 3 \text { marks } \end{aligned}$	$\begin{aligned} & \mathrm{t}^{3}-3 \mathrm{t}^{2}-8 \mathrm{t}^{2} \\ & (8-12-16)-(1-3-8) \\ & -20+10=-10 \\ & -10+10=0 \end{aligned}$ For integration the constant must be ALT $t^{3}-3 t^{2}-8 t^{2}$

SOLUTION								MARKS		ALTERNATIVE
17. (a) $950000\left[1-\frac{5}{100}\right]^{2}$ $920000\left[1-\frac{5}{100}\right]^{2}\left[\frac{1-15}{100}\right]^{3}$ Sh. 526535 (b) 526535×1.25 $=$ sh. 658169 $\begin{aligned} & {\left[1-\frac{\mathrm{r}}{100}\right]^{60}=\frac{658000}{950000}=0.6926} \\ & 1-\frac{\mathrm{r}}{100}=\sqrt[60]{0.6926} \\ & =1-\sqrt[6]{0.6926} \\ & \frac{\mathrm{r}}{100}=\sqrt[60]{0.6926} \\ & =\frac{1}{100}-\sqrt[60]{0.6926} \\ & =0.0062 \\ & \mathrm{R}=0.62 \% \end{aligned}$								M1 M1 A1 $M 1$ A1 $M 1$ $M 1$ A1 8 marks		Or equivalent Accept 0.60\% 0.61\%
18. $\begin{aligned} & \mathrm{BC}^{2}=34^{2}+66^{2}-2 \times 34 \times 66 \cos 96.7^{\circ} \\ & =1156+4356-4488 \times 0.1167 \\ & =5512+524 \\ & =6036 \\ & =\sqrt{6036}=77.69 \mathrm{~m} \end{aligned}$ (b) Area of triangle ABC $\begin{aligned} & =1 / 2 \times 34 \times 66 \operatorname{Sin} 96.7^{\circ} \\ & =1122 \times 0.9932 \\ & =1114 \mathrm{~m}^{2} \end{aligned}$ Area of triangle PB $\begin{aligned} & =1 / 4 \times 1114 \\ & =278.5 \mathrm{~m}^{2} \end{aligned}$ (c) Height of triangle APB $h=\frac{278.5 \times 2}{34}=16.35 \mathrm{~m}$ Distance of the pipe from P $\begin{aligned} & =\sqrt{\frac{4}{9} \times 16.35} \\ & =\frac{2}{3} \times 16.35 \\ & =10.92 \mathrm{~m} \end{aligned}$								M1 M1 M1 B1 A1 e^{-t} $\frac{B 1}{8 \text { marks }}$		Follow through wher logs used Accept 115 from councils table If any $A 0$ (above is lost)
19. (a) $\angle B A R=80^{\circ}$ (b) $\angle \mathrm{STR}=30^{\circ}$ (c) $\angle \mathrm{BSU}=45^{\circ}$ (d) $\angle \mathrm{BRS}=45^{\circ}$								B1 B1 B1 B1 B1 B1 B1 B1 8 marks		Cyclic quadrilateral and supplement of equivalent
20.(a)										
-	-2	-1.5	-1	0	1	2	3	4	5	
x^{2}	-8	-3.4	-1	0	1	8	27	64	175	
-5x ${ }^{2}$	-20	-11.3	-5	0	-5	-20	-45	-80	-125	For the 10 numerical points
2x	-4	-3	-2	0	2	4	6	8	10	B1 for at least 6 points
9	9	9	9	9	9	9	9	9	9	
(b) On the graph: scale Plotting Curve (c) 2.15 ± 0.1 (d) $y=4-4 x$ drawn $x=-0.55 \pm 0.1$								S1 P1 C1 B1 L1 8 marks		Accommodates all values and uniform Can score from the graph (Reject coordinate form)

SOLUTION	MARKS	ALTERNATIVE
23.(a) Volume of hemisphere $\begin{aligned} & \frac{1}{2} \times \frac{4}{3} \times \frac{22}{7} \times 5.2^{3} \\ & 10.4: 10: 4:: 11: h-H=3 h \end{aligned}$ Big cone $\mathrm{V} 1=\frac{1}{3} \times \frac{22}{7} \times \frac{5.2^{2}}{3} \times h$ $\begin{aligned} & V_{1}-V_{2}-\frac{1}{3} \times \frac{22}{7} \times \frac{5.2^{2}}{3} \times\left(3-\frac{1}{9}\right) h \\ & \therefore \frac{1}{3} \times \frac{22}{7} \times \frac{5.2^{2}}{3} \times \frac{26}{9} h \\ & \frac{26}{9} h=10.4 \\ & h=\frac{10.4 \times 9}{26}=3.6 \end{aligned}$ therefore height of the frustum $\begin{aligned} & =2 \mathrm{~h} \\ & =7.2 \mathrm{~cm} \end{aligned}$ (b) $\begin{aligned} & L=\sqrt{3.62+\left[\frac{5.2}{3}\right]^{2}}=3.995 \\ & L=\sqrt{10.8^{2}+5.2^{2}}=11.98 \\ & \text { Area }=\Pi r^{2}+\Pi R L-\Pi r! \\ & =\frac{22}{7} \times 3+\frac{22}{7} \times 5.2 \times 11.98-\frac{22}{7} \times \frac{5.2}{3} \times 3.995 \\ & =9.429+195.8-21.76 \\ & =183.469 \\ & =183.5 \mathrm{~cm}^{2} \end{aligned}$	M1 M1 M1 A1 M1 M1 A) 8 marks	
24. (a) x 2 3 4 5 6 7 8 y 3 5 9 15 23 33 45 (b) $\begin{aligned} & A=1 \times 1 \times\{(3+45)+2(5+9+15+23+33)\} \\ & =\frac{1}{2}(48+170) \\ & =109 \end{aligned}$ (c) $\begin{aligned} & \int_{2}^{-8}\left(x^{2}-3 x+5\right) d x \\ & =\frac{x^{3}}{3}-\left.\frac{3 x^{2}+5 x}{2}\right\|_{2} ^{8} \\ & =\left[\frac{8^{3}}{3}-\frac{3 \times 8^{2}}{2}+5 \times 5\right]-\left[\frac{2^{3}}{3}-\frac{3 \times 2^{2}}{2}+5 \times 2\right] \\ & =108 \end{aligned}$ (d) It would given an underestimate because the line for the trapezium run below the curve in the region.	B1 M1 M1 A1 M1 M1 A1 B1 8 marks	

K.C.SE 1999 MATHEMATICS PAPER $121 / 2$ MARKING SCHEME

SOLUTION	MLTERNATIVE	
8.		

