K.C.S.E 1995 PAPER 1 MARKING SCHEME

1. Micrometer screw gauge
2.

Fry. :
3. Effort would reduce
4. Flow from a to B
5. Pressure difference between liquids in A and B is $\mathrm{P}=$ egh where e is liquid, $\mathrm{g}=$ acceleration due to gravity and h is height
But force $=P x$ cross section area of siphon, $P=F / A$
Thus F = ugh A Since egg. A are constants
F α
6. No change in flow OR the flow will still continue
7. Oil spread until it is one molecule thick or film taken as a perfect circle or oil drop has been taken as perfect sphere/ cylinder/ uniform thickness
8. The liquid expand uniformly, expansion is measurable (large enough), thermal conductivity
9. Rectilinear propagation/ light travels in a straight line
10. Water/ or glass are poor conductor of heat
11. Each material is brought in tupi to touch the cap. The conductor will discharge the electroscope while the insulator will not (accept bring near conductor gauge)
12. Can be short - circuited Without being destroyed
> Longer life/eflectrolyte never need attention
$>$ Can stay discharged without being destroyed
$>$ Can becharged with large currents faster charging
> More rugged/ not damaged by rough condition of use/ robus
> Delivers large current, light
13. Surface tension / adhesive forces supports water column or more capillarity in tube 2 than tube 1
$>$ Surface tension is the same in both tubes and equal to the weight of water column supported
$>$ Narrow tube has longer column to equate weight to wider tube
$>$ Volume of water in the tubes is same hence narrower tube higher column
14. - Length of conductor in the field

- Angle between conductor and fields

15. All ferromagnetic materials are attracted by magnets or any magnetic materials is attracted
16. - increasing the tension

- Reducing the length

17. At equilibrium sum of clockwise moment $=$ sum of anti - clockwise moments

Clockwise moments $=\mathrm{P} \quad \mathrm{x} \quad \mathrm{X}=\mathrm{QY}$

$$
P x=Q y
$$

18. h glass $=\mathrm{V}$ air $/ \mathrm{V}$ glass

$$
1.5=3 \times 10^{8} \sqrt{ } \mathrm{~g}
$$

$$
\operatorname{Vg}=3 \times 10^{8} / 1.5 \quad=2 \times 10^{8} \mathrm{~ms}^{-1}
$$

19. $V=f \lambda$ sine V is constant reducing f to $1 / 3 \Rightarrow \quad \lambda$ increases 3 fold
20. While light is composed of seven colour different/ many colour. For each colour glass had different value of refractive index/ different velocities of different λ. So each colour is deviated differently causing dispersion
21. A body at rest or in state of uniform motion tends to stay in that state unless an unbalanced force acts on it.
22. Heat capacity is quantity of heat required to raise the temperature of the body by 1 k or $1{ }^{0} \mathrm{C}$ while, specific heat capacity is quantity of heat requiredfo raise temperature of unit mass of body by $1 \mathrm{k} / 1^{0} \mathrm{C}$.
23. (If $\mathrm{x} \neq \mathrm{z}$ but both above y give 1 mk . Accept differende of 1.0 mark)

$h X=h Z>h Y$
24. - Reducing

- Increasing

25. Polarization
26.

Type of radiation	Detector	Uses
Ultra violet	Photographic paper fluorescence material	Cause ionization kills bacteria OR operating photosular cells photography
Infrared	Phototransistor blackened thermometer	Warmth sensation
Radio waves	Radio receiver or TV receiver	Communication

27. $\mathrm{E}_{2}=\mathrm{E}_{1}+\mathrm{hf} \mathrm{i} \quad$ or $\mathrm{E}_{2}-\mathrm{E}_{1}=\mathrm{h}=\mathrm{c} / \lambda$
$\mathrm{h}=$ plank constant
c- Velocity of light
λ - Wave length of light
28. - Lead
29. Extrapolation on graph (line to touch frequency)

Reading on graph to $(4.0+-0.2) \times 10^{14} \mathrm{~Hz}$
30. Lines parallel to the one shown but cutting of axis further in
31. Quality / Timbre
32. $\mathrm{X}=14$
33. The point where the weight of the body acts
34. Temperature of source be the same

- Length of rods be the same / wax
- Amount of wax (detector) be the same

35.

36.

Diagram Shewing Cevivengent
rays falling on the Namer
Convergent rays brought os focus at the eye
OR
Rays scan wises field of view

K.C.S.E 1995 PHYSICS PAPER 232/2 MARKING SCHEMES

1. (a)

(b) Constant Vel^{0}

Uniform, vet

- zero accl ${ }^{\text {n }}$
(c) $\sqrt{4.5}=\underline{118-50}=15 \mathrm{~m} / \mathrm{s}$
$\sqrt{ } 6.5=\frac{6.5-2}{7}=6 \mathrm{~m} / \mathrm{s}$
Average accln $=\frac{\Delta v}{t}=e^{\rho^{\rho} 11} \frac{(6-15)}{2}$
\& $=-4.5 \mathrm{~m} / \mathrm{s}^{2}$

2. $\underline{1}=\underline{7}+\underline{d}+\underline{1}$
$\begin{array}{lllll}\mathrm{R}_{\mathrm{C}} & \mathrm{R}_{1} & \mathrm{R}_{2} & \mathrm{R}_{3}\end{array}$

$$
\begin{aligned}
& =\frac{1}{6}+\frac{1}{3}+\frac{1}{6} \\
& =\underline{1} \\
& 6 \\
& \operatorname{RC}_{\mathrm{C}}=\underline{6}=1.5 \Omega
\end{aligned}
$$

(b) Total resistance $=1.5+2.5=4 \Omega$

$$
\mathrm{E}=1(\mathrm{YFR}) \text { Or } \mathrm{l}=\frac{\mathrm{V}}{\mathrm{R}}
$$

$$
2=\mathrm{Ll}
$$

Current through ny l=0.5 A
Pd across az $=0.5 \times 1.5 \mathrm{~V}$
$\mathrm{s}=$ current through $3 \Omega=\frac{0.5 \times 1.5}{3}=0.25 \mathrm{~A}$
(c) $\mathrm{R}=/ \mathrm{L} \quad \mathrm{A}$

$$
\begin{aligned}
& \mathrm{I} \quad \underset{\mathrm{~L}}{\mathrm{RA}} \\
& =3.0 \times 10^{-5} \Omega \mathrm{~m}
\end{aligned} \quad=\frac{6 \times 5.0 \times 10^{-6}}{1.0} \frac{\Omega^{2}}{\mathrm{~m}}
$$

3. (a)

(ii) Magnification $=\frac{\mathrm{V}}{\mathrm{u}} \underline{\mathrm{Isign}}=\frac{1.1}{1.6}$ OR $\frac{1.75}{2.5} \quad=0.7 \pm 0.05$
(b) $\underline{1}=\underline{1}+\underline{1}$
$1=10$
f u v
u 60
$\frac{1}{10}=\underline{u}+\underline{v} \quad u=6 \mathrm{~cm}$
$\underline{1}=\underline{1}+\underline{1} \quad$ Objects is 6 cm from the lens
U 1015

4 (a) Lens symbol object between f \& F 2 appropriate rays position of image
Image correctly drawn

The diagram in figure 3 shows a certain eye defect

未) 3
(b) (i) Name of defect is long sightedness
(Refer to the diagram in theffigure 3 above)
(c) (i) For water not to pour weight of the water must be less centrifugal force OR for water to pour out $\underline{\mathrm{MV}^{2}}>\mathrm{mg}$
(ii) Frictional force $\mathrm{F} \overline{\overline{\mathrm{E}}}$ Centripetal force

$$
\frac{\mathrm{MV}^{2}}{\mathrm{R}} \quad=\frac{1200 \times(25)^{2}}{150}
$$

$$
=5.0 \times 10^{3} \mathrm{~N}
$$

5. (a) (i) The magnitude of the induced e.m.f is directly proportional to the rate at which the conductor cuts the magnetic field lines
The induced current flows in such a direction as to oppose the changes producing it.
(ii) Plugging a magnetic into a coil
$>$ in speed its g twins as straight of magnetic field
$>$ Results in an increased in the induced e.m.f
(b) (i) Energy is neither created nor destroyed

Make power constant
$\mathrm{VU}=\operatorname{Joules}(1 / 2) \quad$ current $=\operatorname{charge}(1 / 2)$
Count time $\mathrm{P}=\mathrm{IV}$
For large V, 1 must lower for power input to be equal to power output
(ii)

$$
\begin{aligned}
& \frac{\mathrm{Vs}}{\mathrm{Ns}}-\frac{\mathrm{Vp}}{\mathrm{Vp}} \\
& \mathrm{Ns}=\frac{\mathrm{Vs} \times \mathrm{Vp}}{\mathrm{Vp}} \\
& \mathrm{Vp}
\end{aligned}=\frac{9 \times 480}{240}
$$

$$
\mathrm{Ns}=18
$$

SECTION II

6. (a) Progressive wave- Wave profile moves along with the speed of the wave

Stationary wave - wave profile appears static
Progressive wave - Phase of points adjacent to each other is different Stationary wave - All points between successive node vibrate in phase

Progressive wave - Energy translation in the direction of the wave travels Stationary wave- No translation of energy but energy associated in the wave
(b) (i) A glass slide ie. blackened with soot or paint lines aredrawn close together using a razor blade or pin.
(ii) Path differences equals to an odd number of half wavelengths or completely out of phase (180^{0})

(iii) Photometer / photocell or thermometer with a bulb
7. (a) Common or sillen (semiconductor) is doped with impurity atoms which trivalent (egg boron or indium) intensity in currency on pole group 4 doped with trivalent
(b) p-n-p emitter and carries made of p type material are of n - type material for charge carries holes
$>\mathrm{n}-\mathrm{p}-\mathrm{n}-$ emitter and collector made of n - type material are made of p - type (or charge carries electrons)
(c) At the middle of the reaction of a curve a tangent is drawn change on output $\left(\Delta \mathrm{V}_{0}\right)$ is determined and a corresponding change input $\left(\Delta \mathrm{V}_{1}\right)$ also attained change amplification.

OR

(ii) $i_{2}=l_{C} r l_{B}$
(e) Base - emitter - forward biased

Base collector - reversed biased

PHYSICS PAPER 231/1A 1996 MARKING SCHEMES

- Correct full marks to be given
- Wrong units no marks given
- Wrong substitution no mark
- No units full mark

1. $15.00+0.30=15.30 \mathrm{~mm}$; or $1.53 / 1.53 \times 10^{2} \mathrm{~m}$
2. Frequency: OR wavelength or energy
3. Length of container/ height

Width of the base/ base area/ diameter/ radius of the base/ thickness
4. $\mathrm{h}_{\mathrm{p}} \mathrm{p}_{1} \mathrm{~g}=\mathrm{h}_{2} \mathrm{p}_{2} \mathrm{~g} \quad$ Same as $\mathrm{h}_{1} \mathrm{p}_{1}=\mathrm{h}_{2} \mathrm{p}_{2}$
$\mathrm{h}_{1}=\underline{\mathrm{h}_{2} \mathrm{p}_{2} \mathrm{~g}} \quad=8 \times \underline{18}$
$\mathrm{pg} \quad 08$
$=18 \mathrm{~cm}$;
5. (i) Rubber is elastic and when a nail pushed through itstretches and grips the nail firmly without allowing air leakage
(ii) Valve effect pressure from inside causes tyre rubber to press firmly on the nail
6. Concrete mixture and steel have approximately the same linear expansively. The expand/ contract at the same rate;
7. Radiation is at the electromagnetre waves Φ infrared while conduction involves particles, which move at lower speed
8. There are three differentsources of light of the different intensities; brighten/ dimmed / different direction/ amount quality. Similar sources/ at different distances from the object
9. like charges repel unlike charges attract
10. Mass per ưift length

Or (linear density/ thickness/ cross - sectional area/ diameter, radius
11. Adhesion

Cohesion/ surface tension
12. As the thermistor is heated its resistance reduces/ conductivity increases hence drawing more current through it; hence less current flowing through B;
13. (i) (ii)

Moments of T and F about are equal; but the perpendicular distance from O to T perpendicular distance from O to $\mathrm{F} /$ Resultant moment are zero
15. Turn anticlockwise about O, OR Oscillate about O
16.

17. The wavelength/velocity of the water waves reduces; away from the centre because the pond becomes shallower/ pond deeper at centre
18. Interferences (accept beat)
19. Parallel resistor allowiversion of current; hence may not overheat; / current shared by parallel resistor
20. Heat gained $5(80-40)=m(40-15) \quad$ Heat gained MCD $\theta(80-40)$
$5(40)=25 \mathrm{~m}$

$$
5(80-40)=25 \mathrm{~m}
$$

$$
25 \mathrm{~m}=200=\mathrm{m}=8 \mathrm{~kg}
$$

21. Equal qualities of heated supplied;

$$
\begin{array}{lll}
\mathrm{MCw} \theta_{\mathrm{w}}=\mathrm{MC}_{\mathrm{p}} \theta_{\mathrm{p}} & & \mathrm{MCw}(\mathrm{Qw}-\mathrm{Q})=\mathrm{MC}_{\mathrm{p}}\left(\mathrm{Q}_{\mathrm{p}}-\mathrm{Q}\right) \\
\text { Since } \theta \mathrm{P}>\theta \mathrm{W} & \text { or } & \mathrm{MC}_{\mathrm{w}}>\theta_{0}=\mathrm{MCp}>\mathrm{QP}_{\mathrm{p}}
\end{array}
$$

Heat post MCD $\theta=\mathrm{m}(40-15) \mathrm{MC} 40-15$
22. Magnified, enlarged upright, virtual, image behind the mirror, negative distance
23. Apparent depth $=\underline{\text { Real Depth }} \quad 12 \mathrm{~m}=0.9 \mathrm{~m}$

Refractive indese of water 1.3
24. Pressure is inversely proportional to the speed OR speed increases as pressure distance
25. Maintaining a stable voltage during make and break/ storing charge during make and break and stops arcing sparking
26. High temperature causes high - pressure build up in the cylinder, which causes the explosion; OR increases of KE of gas molecules which result to pressure, build up causing an explosion
27. A Polaroid absorbs/ cuts off light waves in all planes except in a patticular plane of propagation
28. A hears a constant frequency produced by the siren/ same roundness/ pitch B hears a frequency that increases as the vehicle approaches/ soundof increasing loudness/ higher sound
29. Solid copper is denser than water hence the solidsphere sinks; weight is greater than upthrust. Hollow sphere experiences an upthrust equal to its weight so it will float/ density of hollow sphere is less than that of water (2 mks)
30. The weight of the door and the force are perpendicular to one another (1 mk)
31. Eddy current
32. Low negative voltage is applied on control grid, which control the number of electrons reaching the screen
33. Low speed / high charge / more massive/ size is large/ bigger
34. n.p.n
35. Limit the current through the base controls the current/ protect transistor from high current or voltage/ regulate reduce voltage.
36. Diode is forward biased; Base currents flows; hence collector current flows and lights the bulb/ current amplification

PHYSICS PAPER 232/1B MARKING SCHEMES 1996

1. (a) (i) Acceleration a is rate of change of velocity

$$
\begin{array}{r}
a=\frac{v-u}{t} \\
V=U+a t
\end{array}
$$

(ii) Distance is average velocity * time

$$
S=\frac{(v+u) t ;}{2}
$$

Substitution for V with $\mathrm{u}+$ at;
$S=u t+1 / 2 a t^{2}$
(iii) Using $t=v-u$; in $s=u t-1 / 2 a t^{2}$
a
$\mathrm{s}=\mathrm{u} \underline{(\mathrm{v}-\mathrm{u})}+1 / 2 \mathrm{a} \underline{(\mathrm{v}-\mathrm{u})^{2}}=\mathrm{V}^{2}=\mathrm{u}^{2} \div 2$ as
(b) $u=50-v=0 a=2$

Using $\mathrm{v}^{2}=\mathrm{u}^{2}-2$ as;
Substitute $0=50^{2}+2(-2) \mathrm{s}$;
$S=625 m ;$
2. (a) (i) Each bar is suspended at a time using the string;

The suspended bar is allgwed to rest;
Its orientation is observed and recorded;
This is repeated several times for confirmation
(ii) The bar magnet settles in the $\mathrm{N}-\mathrm{S}$ specific direction, due to its Interaction (4) with magnetic field of the earth (1)
The iron bar settles in any direction; (l) because it does not have a magnetic field to the interact with that of the earth; (l)
(b) P and Q are magnetized to the same level, by applying two different (l) current lp and lq such that $\mathrm{lq}>\operatorname{lp}(\mathrm{l})$
Thus Q requires greater magnetizing power, (1) since its domains are more difficult to align; (l) P is easier to magnetize, since its (l) domain are more easily aligned:

Series resistors	$4+1+5 \Omega$	$(1 \mathrm{mk})$
Parallel resistors	$2+3+5 \Omega$	$(1 \mathrm{mk})$
	$\mathrm{R}_{\mathrm{p}}=5 / 2=2.5$	
Total effective resistance $\quad 5.5+2.5=8.0 \Omega$	$(1 \mathrm{mk})$	
Current $\mathrm{l}=\frac{\mathrm{V}}{\mathrm{R}} ;=\underline{4.0} ;=0.5 \mathrm{~A} ;$		

(iii) Current through each wing $=0.5=0.25 \mathrm{~A}$

2
Potential at $\mathrm{Y}=0.5 \times 4 ; \quad 11$; (2 mks)
Potential at $\mathrm{Q}=\frac{0.5}{2} \times 2 ;=0.51 ; \quad(2 \mathrm{mks})$

Potential difference between Y and Q
$=1-0.5 \mathrm{~V}$; $=0.5$
$=0-0.5 \mathrm{~V} ;+0.5 \mathrm{~V}$
4. (a) (i) The aluminium block is heated using the electric immersion heater for some time t ; The temperature changes (2) $\Delta \Phi$ of the blockis recorded;
(ii) Mass of the block m

Time taken t
Initial temperature Φ_{1} final temperature Φ_{2}
Current I voltage V;
Heat given $=$ heat gained by eleetrical heater the block

$$
\begin{aligned}
& 1 \mathrm{Vt}=\mathrm{mc}\left(\Phi_{2}-\Phi_{1}\right) \\
& \mathrm{C}=11.1 \\
& \mathrm{M}(\Phi-\Phi)
\end{aligned}
$$

(iii) Oiling the holes for better thermal; contact lagging
(b) Heat gained by calorimeter

$$
\begin{aligned}
& =60 \times 10^{-3} \times 378(45-25) \mathrm{J} ; \\
& =453.6 \mathrm{~J}
\end{aligned}
$$

Heat gained by water
$=100 \times 10^{-3} \times 4.200(45-25 \mathrm{~J}$;
$=8.400 \mathrm{~J}$
Heat lost by condensing steam $=\mathrm{m}$ /
($163.5-160$) x $10^{-3} / \mathrm{J}$
$=3.5 \times 10^{-3} \mathrm{x} / \mathrm{J}$
Heat lost 3.5 g of (condensed steam) water cooling to $45^{\circ} \mathrm{C}$

$$
\begin{gathered}
3.5 \times 10^{-3}(100-45) \times 4,200 \\
=808.5 \mathrm{~J}
\end{gathered}
$$

Heat given $\quad=$ heat gained
Hence:
$3.5 / \times 10^{-3}+808.5 \mathrm{~J}=4536 \mathrm{~J}+8,400 \mathrm{~J}$;

$$
=2.3 \times 10^{-6} \mathrm{~J} / \mathrm{Kg}
$$

5. (a) (i) Particles of the transmitting medium vibrate in the direction of the wave for a longitudinal wave, but at right angles for a transverse wave:

Sound requires medium but no medium required for electromagnetic wave; speed of sound lower than that of electromagnetic wave;
(b) (i) Speeds of sound;

$$
\begin{aligned}
& 2.5 \times \mathrm{s}=400 \times 2 \\
& \mathrm{~S}=320 \mathrm{~m} / \mathrm{s} ;
\end{aligned}
$$

(ii) $2(x-400)=2.5+2)$;

$$
320 \quad=1120 \mathrm{~m}
$$

(c) (i) Double slit provides coherent sources;
(ii) Dark and bright fringes;

The central fringe is the brightest while the intensity of the other fringes reduces away from the central fringe;
(iii) I. The separation of fringes increases
II. Central fringe is white; fringes on either side are colored;
6. (a) Keep angular velocity Wl constant;

Centripetal force provided by mg;
Fix the mass m and measure of m;
Repeat for different values of m;
(b) (i) graph (see on the next page

Axes labeled
Scale
Pts plot
Straight line
(ii) Gradient of the graph
$=0.625-0.1=1.167 \mathrm{~N}$
$0.525-0.075^{8}$
Force F on?the body $=\mathrm{m}_{\mathrm{b}} \mathrm{W}^{2} \mathrm{r}$
Where $-\mathrm{Mb}=$ mass of the body
$\mathrm{M}_{\mathrm{b} \mathrm{w}^{2}} \mathrm{r}=$ Gradient of the graph $=1.167$
$\mathrm{W}^{2}=1.167=11.67$
0.1
$\mathrm{W}=\sqrt{ } 11.67$
$=3.42 \mathrm{rad} \mathrm{s}{ }^{1}$
7. (a)

Close switch S
Vary pd until G deflects
(b) 1)

Finding f
See graph
Axes labeled
Scale
Pointed plotted
Straight line
(ii) Work function Φ is given by Φh_{0}
F_{0} is the x -intercept of graph
$\mathrm{F}_{0}($ from graph $)=1.2 \times 10^{15} \mathrm{HE}$
$\Phi=6.63 \times 10^{-34} 0.5 \times 1.2 \times 10^{15} \rho^{Q}$
$=7.96 \times 10^{-19} \mathrm{~J}$

No. 6
(a)

KCSE 1997 PHYSICS PAPER 232/1 MARKING SCHEME

1. Volume $=7.4-4.6 \mathrm{~cm}$

$$
\begin{aligned}
& \text { 2.8 } \mathrm{cm} \\
& \text { Density }=\underline{\text { mass }} \\
& =\underline{\text { Volume }} \\
& \underline{21 \mathrm{~g}} \\
& =3.8 \mathrm{~cm}^{3}
\end{aligned}
$$

2. F_{1} and F_{6}
3. Either altitude or latitude/ radius of earth changes/ acceleration due to gravity from place to place away from the earth
4. Balance: meat +0.5 kg on one side and 2 kg on the other:
5. $\mathrm{H}_{1} \mathrm{P}_{1} \mathrm{~g}=\mathrm{h}_{2} \mathrm{p}_{2} \mathrm{~g}$
$\mathrm{H}_{2}=\frac{1.36 \times 10^{4} \times-64}{8 \times 10^{2}}$
$=1088 \mathrm{~cm} ; / 10.88 \mathrm{~m}$.
6. Volume of 1 molecule $=\frac{18 \mathrm{~cm}^{3}}{6 \times 10^{23}}$

Diameter of the molecule $=18 \mathrm{~cm}^{35}$

$$
=3.1 \times 10^{8} \mathrm{~cm}
$$

$$
=3.11 \times 10^{8}
$$

7. Glass is a bad conductor of heart, the difference in temperature between the inside and the outside cause unequal expansion
8. Adhesion of water to glass is greater than cohesion
9. The rate of cooling depends on the rate of evaporation

Rate of evaporation depends on the surface area
Surface area A, < surface area B for evaporation
10. A ray from A
A ray from B

Relative positions of A and B correctly drawn
11. Solar cell (photovoltaic) photocell/ photo electric cell
12.

13. Soft magnetic materials loose their magnetism easily while hard magnetic materials retain magnetism longer
14. $\mathrm{Q}=\mathrm{It}$

$$
\mathrm{Q}=0.5 \times 4 \times \times 60 ; \quad=120 \mathrm{C}
$$

15.

16. $\mathrm{d}=$ speed x t;
340×2
680m
17. At low speeds the speed is streamline At high speed the flow is turbulent
18. $\quad \frac{\mathrm{V}_{\mathrm{r}}}{\mathrm{V}}=\frac{1}{1_{\mathrm{r}}}$
$240=30$
$6 \quad 1_{r}$
19. $\quad \mathrm{mgh}=1 / 2 \mathrm{mv}^{2}$ OR $\mathrm{V}^{2}=\mathrm{U}^{2}+2$ as;
$h=1 / 2 \quad S=V^{2}=36$
$\begin{array}{lll}=18 \mathrm{~m} ; & 2 \text { as } & 2(10) \\ \mathrm{S}=\mathrm{ut}+\mathrm{g} / \mathrm{at}^{2} & & =1.8 \mathrm{~m} ;\end{array}$
20. $\quad V=f ;$
$\mathrm{V}=\frac{3.0 \times 10^{8} \mathrm{~ms}^{-1}}{95.6 \times 10^{6} \mathrm{~S}^{-1}}=3.14 \mathrm{~m}$;
21. 6 V
22. parallel

$$
\frac{1}{\mathrm{R}_{P}}=\frac{1}{400}+\underline{1}+\underset{400}{\underline{2}}
$$

$$
\begin{gathered}
\mathrm{YZI}=\mathrm{V}=12=0.02 \mathrm{~A} \\
\mathrm{R} \quad 60
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{I} \quad \begin{aligned}
&=\mathrm{V}=12=0.02 \mathrm{~A} \\
& \mathrm{R} \quad 60 \\
& \\
& \frac{400}{600} \times 12=8 \mathrm{~V}
\end{aligned}
\end{gathered}
$$

23. $\quad($ No of irons) $\times 1000)=$ IV

$$
\text { Number }=\underline{13 \times 240}=3.12 ;
$$

$$
1000
$$

24. Extra heat is required to change ice to water / latent heat of fusion
25.

26.

27. A trolley slows d $6 \mathrm{wn} /$ motion decreases since mass increases and the momentum is conserved, the welocity goes down
28. $\mathrm{C}_{\mathrm{T}}=\mathrm{C}_{1}-\mathrm{C}_{2}=1=1+1$

$$
\begin{gathered}
\mathrm{C}_{\mathrm{T}} \quad \mathrm{CP}_{P}^{C_{3}} \\
=\mathrm{C}_{\mathrm{T}}=\frac{\mathrm{C}_{\mathrm{P}} \mathrm{C}_{3}}{\mathrm{C}_{\mathrm{P}}+\mathrm{C}_{3}}
\end{gathered}
$$

29. ${ }^{\circ} \mathrm{C}+273=-20+273=252 \mathrm{~K}$
30. (a) Dark and bright fringes
(b) Coloured fringes
31. Small differences in frequencies

32. By using laminated core
33.

35. After 3 secs number decayed $=1 / 2 \times 5.12 \times 10^{20}=2.56 \times 10^{20}$ Next 3 secs. Number decayed $=1 / 2 \times 2.56 \times 10^{20}=1.28 \times 10^{20}$
Total number decayed

$$
\begin{aligned}
& =(1.28+2.56) \times 10^{20} \\
& =3.84 \times 20^{20}
\end{aligned}
$$

PHYSICS PAPER 232/2 K.C.S.E 1997 MARKING SCHEME.

1. i) -To make and beak contact / circuit - It bends and straightens or the metals expand differently.
ii) Current flows, heating takes place, temperature rises, strip is heated and bends way from contact ; disconnects heater; temperature; drops reconnected heater or completes circuit.
b) Let final temperature be θ_{2}

Heat lost by water $=4200 \times 0.2\left(20-\theta_{2}\right)$
Heat lost by glass $=0.2 \times 670 \times\left(20-\theta_{2}\right)$
Heat gained by ice $=0.04 \times 334 \times 10^{3}$
Heat gained water $=0.04 \times 4200\left(\theta_{2}-0\right)$
Heat lost $=$ Heat gained .
$4200 \times 0.2\left(20-\theta_{2}\right)+0.2 \times 670 \times\left(20-\theta_{2}\right)=0.04 \times 334 \times 103+0.04$
X 4200 ($\theta_{2}-0$)
$\theta_{2}=5.36^{\circ} \mathrm{C}$
2(a)

ii) Extrapolation F4-0
10.6 m force is zero

Leading x axis $=10.6+0.2$
10.6-8

Intercept 10.6
$10.6-8=2.6 \quad=2.6 \mathrm{~m}$ away from B
b) $10 \mathrm{w}+(10 \times 60)=2.0 \mathrm{x} 40 \Rightarrow 10 \mathrm{w}+6 \mathrm{x}=80 \mathrm{w}=\mathrm{x} / 10=2 \mathrm{~N}$

3a)

b) i) $\begin{aligned} & \mathrm{V}=\mathrm{u}+\mathrm{at} \\ & 0=20+2 \mathrm{a} \quad \text { OR } \quad \text { Deceleration }=\frac{\mathrm{u}-\mathrm{v}}{\mathrm{t}}\end{aligned}$ $\mathrm{a}=-10 \mathrm{~ms}^{-2} \quad \frac{=20-0}{2}$
$=10 \mathrm{~ms}^{-2}$
ii) \quad Stopping time $=2.2 \mathrm{~s}$

Before stopping $=0.2 \times 20=4 \mathrm{~m} \quad \mathrm{~S}=\mathrm{ut}+1 / 2 \mathrm{at}^{2}$

$$
\begin{array}{ll}
\frac{10-202}{2(-10)}=\frac{400}{20}=20 & = \\
20+4=24 \mathrm{~m} & =19.8 \mathrm{~m}
\end{array}
$$

4a) $\mathrm{AB}:(2000 \times 20)+(600 \times 200)+1 / 2 \times 10 \times 4000)+(\mathbb{C} / 2 \times 30 \times 4000)$

$$
40000+120000+60000
$$

$$
\text { Total } 200000 \mathrm{~J}=200 \mathrm{KJ}
$$

b) $\quad 6000 \times 0.6=3600 \mathrm{w}$
c) Power Input $=\underline{3.0 \times 10^{5} \times 10 \times 360}=3.0 \times 10^{5} \mathrm{wx}$
60×60
Total $=\left(3+2 _\times 10^{3}=5.0 \times 10^{3} \mathrm{kw}\right.$ Eff. ${ }^{3} / 5 \times 100=60$
5a) Amount of current
No of coils / shape of core / X - core
b) i) End of coil facing up becgines a south pole and the metre rule is pulled down / attraction occurs. Or Rule tips; cere magnetized; top of core becomes south pole; attracts magnet.
ii) The metre rule to have appointer attached to read zero when switch S is open. Use rheostat to vary current to maximum and calibrate accordingly.
c) $\mathrm{HF}=\mathrm{hf}_{\mathrm{o}}+1 / 2 \mathrm{mv}^{2}$

$$
\begin{gathered}
=\left(3.2+82 \partial \times 10^{-19}=11.2 \times 10^{-19} \mathrm{f}=\frac{11.2 \times 10-19}{6.63 \times 10^{-19}}\right. \\
\lambda=\mathrm{c}=\frac{3.0 \times 10^{8} \times 6.63 \times 10^{-34}}{11.2 \times 10^{-9}}=1.76 \times 10 \mathrm{~m}
\end{gathered}
$$

SECTION 2

6ai) Semiconductors - conducting is by holes Conductors - conducting is by electrons
ii) Semiconductors - silicon, germanium Conductors - copper , tin iron.
b)i)

ii) $\mathrm{I}_{\mathrm{B}}={ }_{0.5 / 100 \times 2}=0.01 \mathrm{~mA} \quad \mathrm{I}_{\mathrm{C}}=2-0.01=1 / 99 \mathrm{MA}$

$$
\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{C}}+\mathrm{Irs}
$$

iii) $\quad \mathrm{IB}=\underline{0.5 \times 4}=0.02 \mathrm{~mA} \quad \mathrm{I}$

$$
100
$$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{c}}=3.98 \mathrm{~mA} \\
& \triangle \mathrm{I}_{\mathrm{b}}=0.02-0.01=0.01
\end{aligned}
$$

$$
\mathrm{I}_{\mathrm{C}}=4-0.02=3.98 \mathrm{~mA} \quad \triangle \mathrm{I}_{\mathrm{c}}=3.98-1.99=1.99
$$

$$
\mathrm{h}_{\mathrm{FE}}=\underline{3.98}
$$

$$
\overline{0.02}=1.99
$$

$$
\triangle \mathrm{I}_{\mathrm{c}}=3.98-1.79=1.99
$$

$$
\triangle \mathrm{I}_{\mathrm{b}}=0.02-0.01=0.01
$$

$$
\mathrm{HFE}=\triangle \mathrm{Ic}=1.99=1.99
$$

$$
\triangle \mathrm{Ib}=0.01
$$

$$
\frac{\Delta \mathrm{I}_{\mathrm{c}}}{\triangle \mathrm{I}_{\mathrm{b}}}=\frac{1.99}{0.01}=199
$$

7a(i) Transverse - particles in the wave perpendicular to the direction of the wave.
Longitudinal - particles movein the same direction as the wave.
b)i)

ii) Velocity decreases since the frequency remains the same. No loss of energy therefore amplitude does not change.
c) a) Frequency $=30 / 60=0.5 \mathrm{~Hz}$
b) \quad Speed $={ }^{6} / 2=3 \mathrm{~m} / \mathrm{s} \quad \lambda=\mathrm{V} / \mathrm{f}^{3} / 0.5=6 \mathrm{~m}$
d) A long AA' - loud and soft sound (constant)
a long OO' - loud and solid.

PHYSICS PAPER 232/1 K.C.S.E 1998 MARKING SCHEME

1. Accuracy of measuring tape is 10 m or $0.1 \mathrm{~cm} \pm 5 \mathrm{~cm}$ or 0.05 m .
2. Length of post is $1.5(1.50 \times 1.55)$ Rangep $=\mathrm{N} 3=$
3. Quantity of heat equation 20x $(42-26) \times \mathrm{C}=10^{3} \times 15 \times 60$

$$
\mathrm{C}=2.8 \times 103 \mathrm{JKg}{ }^{-1} \mathrm{~K}=(2812.5 \text { OR2813 })
$$

4. Detecting imperfection in metal structures/block/flaws
5. addition of soap solution to pure water reduces the strength of the skin total was holding pin from sinking and so it sinks. Surface tension supports the pin. Addition of soap reduces tension/weakens/broken.
6.

8. $\mathrm{I}_{\mathrm{P}}=\mathrm{N}_{3}=\quad \mathrm{Np}=20000 \times 3=2000$
$\mathrm{I}_{\mathrm{s}}=\mathrm{N}_{\mathrm{P}} \quad 30$
9. surface area of water . Nature of surface of the container/colour/texture /material/ (ambient temperatures).
10 Evaporation and cell reaction causeloss of water. Distilled water does not introduce impurities to the cell.
11. $\mathrm{E}=\mathrm{IR}+\mathrm{h}$
$\underline{\mathrm{I}=\mathrm{E}}=\underline{2.0}$
$\mathrm{R}+\mathrm{r} \quad 2.0 \times 0.5 \mathrm{e}^{\mathrm{Q}}=0.8 \mathrm{~A}$
12. $\underline{50}=(\mathrm{I})^{\mathrm{n}} \mathrm{n}=3$ (hálf-lives)
$400 \quad(2)^{\mathrm{n}}$
Half -life $72 \geqslant 24 \mathrm{~min}$.
13. High resistance voltmeter takes less current/low current recording low current.
14. Domains/Dipoles initially organized are disorganized by mechanical forces.
15. As the rod approaches the cap, negative charges/electrons on the cap are repelled towards the rod. The leaf collapses since the positive charges on it are neutralized attraction. As the rod gets even closer to the cap moved more negative charges/electrons charges are repelled to the leaf, causing it to diverge.
16. Length of the rod; diameter/cross sectional area of the rod/thickness nature/type of rod material/conductivity.
17. $\mathrm{R}=\mathrm{P}^{1 / 4} \mathrm{I}=\underline{2.0 \times 10^{6} \times 0.5}=2 \mathrm{~m} \mathrm{OR}=2.041$ or 2.0408

$$
4.9 \times 20^{7}
$$

18 Some energy is lost due to friction/air friction acts on the pendulum/air dumping on the apparatus air resistance.
19. In TV (CRT) deflection is by magnetic field, while in CRO deflection is by electric field. X-Y plates.
ATV (CRT)has two time bases while a CRO has only one.
In CRT it produced 625 lines per second while CRO is 25 lines per second.
20. Heating/ cooking/communication/eye/photographic film or plate/LDR/photocell.
21. Diode is forward-biased, no current flows

Current flows when the switch is closed but when terminals are reversed, no current flows
22. Angle of inclination/nature of surface/length of inclination Height of inclination/frictioal force between the surface.
23. layers of the crystal material are arranged according to faces/ plans/ flat surfaces. Cleavage is only possible parallel to those faces/places/flat surfaces.
24. Principles of moment.
$200 \times 1.5 \mathrm{R} \times 0.5,0.5 \mathrm{f}=1 \times 20 \times 10$ or $0.5, \mathrm{R}=600 . \mathrm{R}=\mathrm{F}+200=400 \mathrm{~N}$ take moments about O $\mathrm{F}=600-200=400 \mathrm{~N}$
$\mathrm{F}=400 \mathrm{~N}$
25.

26 Addition of impurities with higher boiling points/presence of impurities. Water heated under a higher pressure than atmospheric/below sea level.
27. Moon covers the sun/obstrfiction of sun by the moon Both heat and light have same velocity/both are electromagnet waves.
28. Overtones/harmonics
29. Since $\mathrm{F}=\mathrm{MV} 2 / \mathrm{V}$ the sharper the corner (as B) the small the value of R hence the greater the F. (M\& V constant).
30. Gas through the nozzle gains velocity. Hence its pressure reduces above the nozzle. The higher atmospheric pressure pushes air into the gas stream.
31. When mercury is heated (during a fire); it expands and makes contact, completing the circuit to ring the bell.
32. There will be no variation of intensity of light/ uniform intensity/no bands/one
33. Is the one which cannot form on a screen Is formed by rays which are not real

Is formed by extending rays. Formed by apparent rays.
34. Component of weight down the slope $=50 \sin 30^{\circ}=25 \mathrm{~N}$

Total force parallel to slope $=(29+25) \mathrm{N} 54 \mathrm{~N}$.

PHYSICS PAPER 232/2 K.C.S.E 1998 MARKING SCHEME

1. iii) Scale, axes label, unit-plotting 8-10-2

5-7-1 Curve (smooth)
iv) As the number of turns is increased, alignment of domain with field increases. After 35-36 turns, all domains are aligned, so that magnet is saturated.

Sketch - curve above 1 to some saturation, and from origin.

b) When switch is closed electromagnet attracts soft iron. This causes T to close and so circuit 2 is put on.
2.

3. a i) The bullet will land on the track It has some horizontal (inertia) velocity as the track.
(ii) (Use $\mathrm{g}=10 \mathrm{~ms}-2\}$

$$
\begin{array}{ll}
S=u t+1 / 2 \text { at } 2 \\
\text { For freefall } u=0 t=\sqrt{ } 2 h / g & T=6 \mathrm{sec} \\
\text { Horizontal distance }=v x t & =6 \times 50=300 \mathrm{~m}
\end{array}
$$

$$
\mathrm{V} 2=\mathrm{U} 2+2 \mathrm{as} \quad \mathrm{OR} \mathrm{v}=2 \mathrm{U}+\text { at } \mathrm{OR} 1 / 2 \mathrm{Mu} 2=\mathrm{mgh}
$$

From above $u=30 \mathrm{~m} / \mathrm{s}$
$S=$ ut $+1 / 2$ at 2
T=ut $+1 / 2$ at 2
$\mathrm{T}=6 \quad \mathrm{D}=\mathrm{vxt} \quad=50 \times 6 \quad=300 \mathrm{~cm}$
(bi)
Measure pressure with Bourdon gauge
Measure the length of air (reg volume at tone).
(ii)

Tabulation values of p and length of air column (volume)
Plot graph of I/V vs P OR L vs I/P
Graph is a straight line.
Tabulate P and V (I)
Hence pa I/v
PV (1) = PL
Calculate PV or PL
Hence $\mathrm{Pa}{ }^{1 / v}$
4.
a) i)
(ii) Voltage, current, time
(iii) $\mathrm{Q} v / \mathrm{t} \quad$ Rate $=\mathrm{Q} / \mathrm{t}=\mathrm{v} / \mathrm{tT}(\mathrm{T}=$ time taken for sun to heat $)$
b) Fig. 4 shows a photocell.

ii) When light rays strike cathode C surface electrons gain photon (energy) hence the cathode.
iii) Draw a simple circuit including the photocell to show the direction of flow

ii) Since $\sin i$ is common and $r<r e$ then $\sin r v<\sin r e$
b) $\quad \mathrm{n} \operatorname{Sin} \mathrm{C}=1$ OR $\operatorname{Sin} \mathrm{C}^{1 / n}$ $\sin C=1 / 1.4 \quad C=45.600(45.58)$ or $45.35 \mathrm{~min} / 45.36$

SECTION II

6 a) When T and Y are connected C is charged by E, untib C achieves same p.d. across it as for E C max p.d is achieved when 9 and Y are connected after first process. C acts, as source of e.m.f and discharges through r unit no more current flow or current is zero.
b) Current $=d Q$ draw target at 30 . Substitution $I=3.6 \mu \mathrm{~A} \pm 0.2 \mathrm{~A}$.

7a) 2 complete rays, 2 with arrow at one end image (inverted real) (continuous tie) locating F size $2.4 \pm 0 \mathrm{~cm}$
b)

U (cm)	20	25	$30{ }^{5}$	40	50	70
$\mathrm{V}(\mathrm{cm})$	20	16.7	15°	13.3	12.5	11.6
$\frac{1}{\mathrm{~V}}\left(\mathrm{~cm}^{-1}\right)$	0.50	$\begin{gathered} 0.040 \times \\ \gamma^{5} \end{gathered}$	0.033	0.025	0.020	0.014
$\frac{1}{\mathrm{~V}}\left(\mathrm{~cm}^{-1}\right)$	0.50	0.060	0.067	0.075	0.080	0.086

ii) $\quad 1 / \mathrm{f}=1 / \mathrm{u}+1 / \mathrm{v}$ Intercept ${ }^{1 / \mathrm{f}}$
$0.1=1 / \mathrm{f} \quad 0 . \mathrm{f}=10 \mathrm{~cm}$

PHYSICS PAPER 232/1 K.C.S.E 1999 MARKING SCHEME.

1. Reading on the vernier calipers
$0.5+0.01(5) \quad 0.5+0.05 \mathrm{~cm}=0.0055 \mathrm{~m} / 5.50 \mathrm{~mm}$.
2. Third force F3 acting on the ruler is either upwards or downwards.

3. Center of gravity rises when the body is tilted slightly and lowers when released / returns to original position.
4. Y must be below x

Reason: P water is greater than paraffin $=$ height of water required is therefore less than that of paraffin.
5. Cohesion between Hg molecules i§greater than adhesion between Hg and glass molecules/cohesion force or adhesion. Force.

7. α Particles are + vely charged, if majority deflected most \Rightarrow atom is empty.

Deflection \Rightarrow existence of $a+$ vely charged nucleus.
Few deflected \Rightarrow nucleus is small/mass is concentrated at the centre
8. Angle of rotation of reflected ray=2(angle of rotation of mirror)

$$
=2 \times 30=60^{0}
$$

9. Charge concentrate at sharp point causing heavy discharge/ ionization neutralization, leaf falls off.
10. $\quad \mathrm{V}=\mathrm{IR} \Rightarrow \mathrm{I}=\mathrm{V} / \mathrm{R} \quad \mathrm{I}=3 /!=3 \mathrm{~A}$
$1 / R=1 / R 1+1 / R 2=2 / 2$
$1 / \mathrm{R}=1=\mathrm{R}=1$
11. $4 \mathrm{~mm}=20 \mathrm{~N}$

\[

\]

12. -Dipping a magnet into a container with iron fillings, most of them will cling at the poles

\Rightarrow

- Use of plotting compass to trace.

13.

14. Moment of couple $=$ Force x distance between forces.
$=10 \times 2=20 \mathrm{NM}$.
15.
$\mathrm{F}=\mathrm{Ma}$
$35 \mathrm{~N}=20 \mathrm{a}$
$=70 \times 0.5$
F 35N
$35 \mathrm{~N}=20 \mathrm{a} \quad \mathrm{a}=\frac{35}{20}$
16. $\quad \mathrm{P}=$ force x velocity Power $=\mathrm{Fd} / \mathrm{t}=\underline{20 \times 10 \times 20}$
$\operatorname{Mgxh} / \mathrm{t}=20 \mathrm{x} 10 \mathrm{x}^{20 / 40}$

$$
40
$$

$=100 \mathrm{w}$
$=100 \mathrm{j} / \mathrm{I}$
17. $\mathrm{F}=\mathrm{I} / \mathrm{T}=1 / 0.5=10 / 5=2 \mathrm{HZ}$

OR
$\mathrm{F}=$ No. of waves made in 1 second $=2 \mathrm{~Hz}$
OR
$F=\underline{\text { No of waves }}$
Time $\quad=2 / 1=26^{5} / 1.25=2 \mathrm{~Hz}$
18. Beat frequency $\mathrm{f}=\mathrm{f} 2-\mathrm{f} 1$
$\mathrm{F}=\mathrm{f} 2-\mathrm{f} 1$

$$
\begin{array}{ll}
=258-256 & 256-258 \\
=2 \mathrm{~Hz} & =/-2 /=2
\end{array}
$$

19. $\mathrm{P}=\mathrm{V} 1=15000$ ₹ V x 2
$\mathrm{W}=\mathrm{QV}$ but $\mathrm{Q}=\mathrm{It} \quad \mathrm{e}=\mathrm{I}^{2} \mathrm{Rt}$
10×60
$=\mathrm{VI}=\mathrm{B}=1500$
$\begin{array}{cl}=\mathrm{V}=\mathrm{W} 15000 & 1500=2 \times 2 \times \mathrm{R} \times 60 \times 10 \\ \mathrm{Q} 60 \times 10 \times 2 & 60 \times 10 \times 2150=24 \mathrm{R} \\ \mathrm{V}=12.5 \mathrm{v} & 25=4 \mathrm{R}\end{array}$
150
12
$\mathrm{V}=\frac{25}{4} \times 2$
12.5 V
$\mathrm{V}=12.5 \mathrm{~V}$
20. Heat lost by substance $=$ heat gained by water

$$
\begin{aligned}
& M_{s} C_{s} \triangle \theta_{1}=M_{w} C_{w} \triangle \theta 2 \\
& 2 \times 400 \times 60=M_{w} \times 4200 \times 1 \\
& M_{w}=\frac{2 \times 400 \times 60}{4200}=\frac{30}{7}=11.4 \mathrm{~kg}
\end{aligned}
$$

21. $\mathrm{V}=\mathrm{I}(\mathrm{R}+\mathrm{r})$
$5=\underline{10}(\mathrm{R}+50) 500 \Rightarrow \mathrm{R}+50 \Rightarrow \mathrm{R}=500-50=450 \Omega$
1000
22. Apparent depth $=30-10=20 \mathrm{~cm} \underline{\text { real depth }}=\underline{30}=1.5$

Apparent depth 20

23. Kinetic energy ray / heat energy.
24. - Horizontal acceleration is zero because g component horizontally is 0
-Horizontal velocity remains constant

- Resultant horizontal force is zero

25. $\quad \mathrm{V}_{2}$ is smaller than V_{1}
26.

27.
$\mathrm{P}_{1}=1.03 \times 10^{5}$
$\mathrm{T} 1=20: \mathrm{C}=393 \mathrm{~K} \quad \mathrm{~V} 1=\mathrm{V}$
$\mathrm{P}_{2}=$?
$\mathrm{V} 2=1 / 8 \mathrm{~V}$ or $\mathrm{v} / 8$
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
$1.03 \times 10^{5}-\mathrm{P}^{2 / 8}$

- resultant force is Zero.
.

Radio waves, infrared, x-rays, Gamma rays.
29. Up thrust $=\mathrm{PV} \times 10=10 \mathrm{PV}$
30. Ultra violet releases electrons from zinc plate by thermal emission.

On removal of electrons, zinc becomes \& yely charged.
Positive charge on zinc discharges/ neutralizes the charged on the electroscope.
31. Tension $=$ centripetal force.

$$
\begin{array}{llll}
\mathrm{T}=\mathrm{Mv}^{2} / \mathrm{r} & \text { but } \mathrm{v}=\mathrm{wr} & \mathrm{~m}^{\ell} & 2=0.1 \times \mathrm{x}^{2} \times 0.33 \\
\mathrm{~T}=\mathrm{Mw}^{2} \mathrm{r} & \mathrm{t}=0.2 \times 10=2 \mathrm{~N}^{\mathrm{Q}} & 2 \mathrm{~N}=\mathrm{Mw}^{2} \mathrm{r} & 2=0.1 \times \mathrm{w} 2 \times 0.03
\end{array}
$$

$$
-\mathrm{w}^{2}=2 / 0.003 \mathrm{w} \sqrt{ } 2000 / 3 \gamma^{5} \mathrm{w}=\sqrt{ } 666.7=25.82 \mathrm{rads} / \mathrm{s}
$$

32. Object should be between F and lens.

33. Downwards into the paper.
34. A-earth wire B - live wire C neutral wire
35. $\mathrm{Z} \xrightarrow{\mathrm{Y}} \mathrm{Z} \xrightarrow{\beta} \mathrm{Z}_{+1}+^{0}-1 \mathrm{e}$

Or Atomic number charges by / New is a head of the old or $\mathrm{Z}+1$

PHYSICS PAPER 232/2 K.C.S.E 1999. MARKING SCHEME

1a) Longitudinal waves - direction of the disturbance while $1 / 2$. Transverse waves - direction of propagation is perpendicular to that of the disturbances.
bi) $\quad \mathrm{YP}-\mathrm{XP}=2 \lambda$
ii) Dark fringes; crests and troughs arrive at the same time OK destructive interferences Bright fringes; crests arrive together at the same time OR constructive interference.
iii) No interference pattern because no diffraction takes place.

C i) $\quad \mathrm{T}=(2.5-5) \times 10-3$

$$
=20 \times 10-3 \mathrm{~s} 10^{3}
$$

ii)

3i) Average velocity at intervals AB and CD .
$\mathrm{T}=1 / 50 \times 56$
$\mathrm{V}_{\mathrm{AB}}=1.5 \mathrm{~cm} / 0.1 \mathrm{~s}$
$\mathrm{V}_{\mathrm{CD}}=3.2 \mathrm{~cm} / 0.1 \mathrm{~s}$
$=0.1 \mathrm{~s}$
$15 \mathrm{~cm} / \mathrm{s}$
$32 \mathrm{~cm} / \mathrm{s}$
ii) Average acceleration of the trolley.
(b) $\mathrm{V} 2=\mathrm{U} 2+2 \mathrm{gh} \mathrm{mgh}=1 / 2 \mathrm{MV} 2$
$\mathrm{V}=\sqrt{2 \mathrm{gh}}$
ci)

4a) Figure 5 represents a simple voltage amplifier circuit.
b i) Base current.

$$
\begin{aligned}
\text { Current gain }= & \frac{\text { Collector current }}{\text { Base current }} \quad \mathrm{p} 2=1_{\mathrm{a}} / \mathrm{Ib} \\
& \frac{62.5=2.5 \times 10-3}{\mathrm{Ib}} \\
& \frac{\mathrm{Ib}=2.5 \times 10-3=40 \mathrm{uA}}{62.5}
\end{aligned}
$$

ii) Load resistance, R_{L}
P.d across R_{L}

$$
\begin{aligned}
& \mathrm{RL}=\frac{5.5}{2.5 \times 10^{-3}}=2.2 \mathrm{k} \Omega \\
& 10-4.5=5.5 \mathrm{ICRL}=5.5 \\
& \mathrm{RL}=\frac{5.5}{2.5} \times 10^{-3}
\end{aligned}
$$

5a) Ammeter reading decreases.
The resistance of metals decreases with increase in temperature.
i) $\quad \mathrm{P}=\mathrm{V}^{2}=\underline{(240)^{2}} \quad \mathrm{P}=576 \mathrm{w}$

$$
\mathrm{R} \quad 100
$$

ii) $\quad \mathrm{P}=\mathrm{VI}$
$\mathrm{I}=\frac{\mathrm{P}}{\mathrm{V}} \quad=\frac{576}{240}=2.4 \mathrm{~A}$

SECTION II

6a) Benzene sinks in liquid benzene.
Water increases in volume on solidifying while benzene reduces in volume; ice is less dense that liquid water. Solid benzene is denser that liquid benzene.
bi) Weigh the metal block in air and in water
Fill the overflow can in water and place on a bench / diagram
Collect the overflow in the beaker and weigh
Compare difference in weight of metal block andweight of overflow
Repeat
Up thrust $=$ tension + weight

$$
=(0.5+2.0)=2.5 \mathrm{~N}
$$

Weight of H 2 O$)=2.5 \mathrm{~N}$
$\mathrm{M}_{\mathrm{w}}=1000$
V_{w}
$\mathrm{Vw}=0.25$ volume of Wood
1000
Density of wood $\div 0.2$
alternative
Up thrust $=2.5 \mathrm{~N}$
R.D $=\frac{\text { Wt. in air }}{\text { Upthrust }}=\underline{2.0}=0.8$
€wood
€wood
€wood
0.25/100
$\underline{0.2 \times 1000}$
25
$800 \mathrm{~kg} / \mathrm{m} 3$
c i) Time taken for half of the radio acute material to disintegrate.
ii) Correct readings for 60 and 30 time $25+2$ minutes

