MARKING SCHEME CHEMISTRY PAPER 233/2 2000 1. a) i) Alkaline earth metals (1 mark) ii) A√ (1 mark) iii) Covalent, because the form bonds by sharing of electrons (2 marks) iv) D,O, OR ALO, (1 mark) v) C D E F b) i) H/, because their boiling points are quite close/ (1 mark) ii) K√ (1 mark) iii) I - Lr, because its boiling point is lower than room temperature and is slightly soluble in water√ (2 marks) ∏ - J√ (1 mark) 2 a) i) I - Distilled water/H₂O√ (1 mark) II - Titanium/Platinum/ (1 mark) ii) Chlorine/Cl_{2(g)}√ (1 mark) iii) I - Paper Industry/Rayon manufacture/Dyes manufacture - Glass industry - Manufacture of soap - Manufacture of Al - Manufacture of bleaching agents - Manufacture of drugs II - To reduce running costs/make process economical To avoid pollution√ b) i) I: $2Na^{+}_{(aq)} + 2e^{-} \rightarrow 2Na_{(aq)} + e^{-} \rightarrow Na_{(1)}$ OR $Na^+_{(aq)} + c^- + Hg_{(sp)} \rightarrow NaHg_{(l)} \checkmark$ (1 mark) II : $2NaHg_{(1)} + 2H_2O_{(1)} \rightarrow 2NaOH_{(aq)} + 2Hg_{(1)} + H2_{(g)} \checkmark OR$ $2Na/Hg_{(1)} \xrightarrow{4} 2H_2O_{(1)} \xrightarrow{4} 2NaOH_{(aq)} + Hg_{(1)} + H_{2(g)} \xrightarrow{4}$ (1 mark) ii) Q = $lt = 100 \times 5 \times 60 \times 60 = 1800000$ 1 Faraday form 1 mole of Na 1 Mole of Na/Hg⇒ 1 mole of NaOH NaoH = 23 + 16 + 1 = 4096500C \Rightarrow 40g of NaOH 180000 $\Rightarrow \frac{40 \times 1800000}{96500}$ = 746g 3. a) i) Galena√ (reject PbS on its own) (1 mark) ii) Some of the sulphide is converted with oxide (PbO or SO2) (1 mark) iii) Carbon monoxide (CO) / OR Carbon dioxide (CO₂) √ (1 mark) iv) $PbO_{(s)} + C_{(s)} \rightarrow Pb_{(s)} + CO_{(g)} \checkmark$ (1 mark) v) To reduce unreacted PbS to Pb/ (1 mark) vi) SO2 is poisonous /// SO2 causes acid rain / OR CO is poisonous / DR lead is poisonous /

0

(any two 1 mark)

 b) Hard water contains Mg⁺²/Ca⁺²√, these ions from a protective layer of CaCO₃√/CaSO₄/ MgCO₃ on lead. Soft water does not form these deposits√ (3 marks)

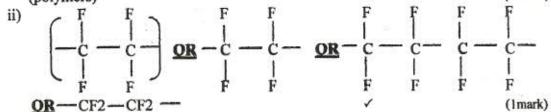
(1 mark)

c) Radioactive shielding ✓ Lead and accumulators/batteries Making roofs Making alloys e.g. soldering wire Making of anti-knock additives Manufacture of paints/bullets/fall bearings

 \Diamond

4 a) i) (4 marks) Collection by downward www.freekcsepast Heat ii) NaCl_(s) + H₂SO_{4(l)} \rightarrow NaHSO_{4(s)} + HCL_(g) \checkmark (1mark) OR iii) - Concentrated Sulphuric acid- Siliga gel - Anhydrous CaCl₂ (1 mark) iv) A white precipitate is produced HCl (g) in water ionizes to form H⁺ ions and Cl⁻ ions. The CI ions / combines with Pb+2 to form lead (a) chloride /. PbCl2(s) OR $HCl_{(aq)} \rightarrow H+_{(aq)} + Cl_{(aq)} \checkmark$ $Pb^{+2} + 2Cl_{(aq)} \rightarrow PbCl_{2} \checkmark (white ppt) \checkmark$ (3 marks) v) HCl is not an oxidizing agent("), it only reacts and removes the oxides hence cleaning the surface "RHNO3 is a strong oxidizing "" agent, it reoxidises the cleaned surface(% (2 marks) b) i) $HCl_{(aq)} + NaOH_{(aq)} \rightarrow NaCl(aq) + H_2O_{(1)}^{(4,2)}$ Moles of NaOH = Moles of HCl $=\frac{46\times11}{1000}\checkmark$ = 0.506moles(%~) (2 marks) ii) Moles of HCl in 250cm^{3 =} 0.506 × 10 = 506moles^(% -) R.M.M of HCl = $1 + 35.5 = 36.5^{(\%)}$ Mass of HCl = 5.06 × 36.5(%-) = 184.69g(%) Q=14 (2 marks) 5 a) i) Pent-2-ene ii) Butanoic acid√ (2 marks)

b) i) Substitution√
 ii) Addition√


- (1 mark)
- (1 mark)

(2marks)

(1mark)

- c) i) 2C₄H_{10(g)} + 13O_{2(g)}→ 8CO_{2(g)} + 10H₂O_(l) ✓ (1 mark)
 ii) Carbon dioxide (CO2) is produced ✓. This then dissolves in water, forming an acidic solution ✓ (2 marks)
- d) i) Process where monomers (small molecules)join together to form large molecules (polymers)

 (1 mark)

- e) Cheaper, more durable/stronger, can be recycled, easily available, easily moulded/made into many shapes, lighter, can be made on demand (any two 2 marks)
- 6. a) i) M-Graphiter

0

- N Diamond√
- ii) . Glass cutters/cutting glass
 - · Jewerelly
 - Padlocks
 - Tips of drills (or drilling) ✓

iii) M/Graphiter; The fourth electron of each cartonis unbonded/free/delocalised (2 marks)

- b) i) $C_{(s)} + CO_{2(g)} \rightarrow 2CO_{(g)} \checkmark$ (1mark) ii) Potassium hydroxide (KOH) $\checkmark OR$ calcium hydroxide Ca(OH)₂ (1 mark)
 - iii) Pass the gases through limewater (Ca(OH)₂)_(aq) ✓, CO₂ form a white precipitate. But CO does not give^(3, 7) a change <u>OR</u> CQ burns^(3, 7) with a flame CO₂ does not burn. (2 marks)
 - iv) Fuel in water gas and produce gas/Synthetic petrol Extraction of metals • Manufacture of methanols (1 mark)
- 7. a) i) Add drop of the liquid to anhydrous //white Copper (II) Sulphate (CUSO₄) and it will turn blue <u>OR</u>
 - Use cobalt chlorine paper /; which turns from blue / to pink.
 - Use anhydrous cobalt chloride which turns from blue to pink
 (2 marks)
 - ii) Find the boiling point, water has a B.P of 100°C at 1 atmospheric pressure
 Find the freezing point, water has a freezing point of 0°C at 1 atmospheric pressure
 Find the density; water has a density of 1g/cm² at 4°C√ (1 mark)
 - b) i) Sand/leaves/gravel/grit/stones
 - ii) Sedimentation ref. Precipitation
 - iii) I Causes the small suspended particles to settle/precipitate II - Kill microorganisms/microbes/germs
 - c) i) Permanent
 - ii) Addition of Na₂CO_{3(aq)} which precipitate Mg²⁺as MgCO₃
 - Use of distillation; residue of MgSO4 is left behind
 - Use of ion exchange resins which will remove Mg⁺²